LUZERNE COUNTY MATHEMATICS CONTEST
 Luzerne County Council of Teachers of Mathematics
 Wilkes College - - 1975 Senior Examination

(Part I)
NAME \qquad SCHOOL

Directions: For each problem, write your answer in the space provided. Leave any answer which involves π or simplified radicals as it is - do not use approximations.

1. Solve:

$$
3 x^{2}=2 x+1
$$

1. \qquad
2. An equilateral triangle has an altitude of length 3. Find the area of the triangle.
3. If $\sin x=3 / 4$ and $90^{\circ}<x<180^{\circ}$, find $\tan x$.
4. A line has slope $3 / 2$ and passes through the point which has coordinates $(-2,4)$. Find an equation of the line in the form $a x+b y+c=0$ where a, b, and c are integers.
5.
6. \qquad
7. \qquad
8. Find all values of x such that $|3-2 x|<7$.
9. \qquad
10. Solve simultaneously:

$$
\left\{\begin{array}{c}
2 x+y=4 \\
x+2 y=-1
\end{array}\right.
$$

6. \qquad
7. If $f^{\prime}(x)=2 x+3$ and $f(0)=2$, find $f(x)$. (Note: $f^{\prime}(x)$ is the derivative of $f(x)$ with respect to x.)
8. If $f(x)=2 x+1$ and $g(x)=2 x+2$, find a rule of correspondence for $g(f(x))$.
9. \qquad
10. \qquad
11. Let $y=8 x-x^{2}-12$. Find the largest value which y can have.
12. \qquad
13. If f is a function which has the property that $f(a b)=f(a)+$ $f(b)$ for all positive real numbers a and b, find $f(1)$.
14. \qquad
15. Find an equation of the curve each of whose points are equidistant from the point $(4,0)$ and the y-axis.
16. \qquad
17. Find:

$$
\sin ^{-1} \tan \frac{5 \pi}{4}
$$

12.
13. A tin can in the form of a right circular cylinder with lids on top and bottom has a total area of 100π sq.in. Express the volume, V, (in cu.in.), of the can as a function of r, the radius of the base.
(Neglect the thickness of the tin.)
14. \qquad
15. Solve: $3 \log x-\log 2 x=0$
16. \qquad
17. Let $f(x)=|x-2|+|x+2|$. Assuming that $x \geq 2$, find a and b such that $f(x)=a x+b$.
18. \qquad
19. If $0 \leq x \leq \pi / 2$ and $\sin x-\sin 2 x=0$, solve for x.
20. \qquad
21. Simplify:

$$
\frac{\sqrt{x 2+1}-\frac{1}{\sqrt{x 2+1}}}{\frac{x 2}{\sqrt{x 2+1}}-\sqrt{x 2+1}}
$$

18. Write the number 25 as a number to the base 2 .
19. \qquad
20. Solve: $x \cdot 2^{x}+2^{x}$
21.

\qquad
\qquad
20. Find the length of a side of a rhombus whose diagonals have lengths 8 and 10 .
20. \qquad
21. Solve for x if $(\sin x+\cos x)^{2}=3 / 2$ and $0<x<\pi / 2$.
22. A man who is 6 feet tall is standing at a distance of 10 feet from the base of a lamp post which is 20 ft . high. What is the length of his shadow if cast by a light at the top of the post?
22.
21. \qquad
\qquad

NAME \qquad SCHOOL \qquad

1. Solve:

$$
\frac{x}{x^{2}-1}=\frac{2}{x+1}
$$

2. An isosceles right triangle has hypotenuse with length $\sqrt{18}$. Find the volume of the solid generated by revolving the triangle about one of its legs.
3. Find an equation of the circle with center $(3,-2)$ and radius 4.
4. If $\cos A=3 / 8$, find $\cos (-A)$.
5. If f is a function having a rule of correspondence $f(x)=$ $x / 2-3$, find a rule of correspondence for $f^{-1}(x)$, the inverse of $f(x)$.
6. If $\log _{2} 3=a$, find $\log _{3} 8$ in terms of a.
7. \quad Find real numbers x and y such that $(2 x+1) 1-2=y+31$
8. Given triangle $A B C$ with a right angle at C. If $\overline{A C}$ and $\overline{B C}$ have lengths 4 and 6 respectively, and M is the midpoint of $\overline{A B}$, find the area of triangle $A M C$.
9. Find the y-intercept of the line which passes through the midpoint of the line segment having endpoints $(2,-3)$ and $(6,5)$, and is perpendicular to the line having an equation $y=3 x-4$.
10. A rectangle has perimeter 200. Express the area of the rectangle as a function, $A(w)$, of the width, w, of the rectangle.
11.
12. \qquad
13. \qquad
\qquad
14. \qquad
15.
16. \qquad
17. \qquad
18. \qquad
.
19. \qquad
\qquad

\square
\square
\qquad
20. \qquad
21. Solve:

$$
x^{3}-x^{2}-3 x+2=0
$$

12. Find two consecutive integers, m and n such that $m<\log _{3} 40<$ n.
13. Find the area of the region between the graphs of $f(x)=x^{2}$ and $g(x)=|x|$ from $x=0$ to $x=1$.
14. If four coins are tossed, find the probability that exactly two heads will turn up.
15. If $f(x)=x^{2}+2 x-8$, find the set of all x for which $f(x)<0$.
16. \qquad
17. \qquad
18. \qquad
19. \qquad
20. \qquad
21. Find:

$$
\sin \left(\tan ^{-1}\left(\frac{-2}{3}\right)\right)
$$

17. Find the radius of the circle whose area is double if its radius is increased by 2 units.
18. \qquad
19. Solve:

$$
\sqrt{5 x-11}-\sqrt{x-3}=4
$$

19. A rectangular picture has an area of 144 sq.in. It is surrounded by a order which is 2 in . wide. If the area of the border is 120 sq.in., find the dimensions of the picture.
20. \qquad
21. Find:

$$
\begin{gathered}
\sum_{n=1}^{100} \frac{1}{n^{2}+n} \\
{\left[H I N T: \frac{1}{n^{2}+n}=\frac{1}{n}-\frac{1}{n+1}\right]}
\end{gathered}
$$

21. Find the area of the largest right triangle which can be inscribed in the circle of radius 10 .
22. \qquad
23. If A and B are acute angles and $\sin A=1 / 3$ and $\sin B=2 / 3$, find $\sin (A+B)$.
24. \qquad

LUZERNE COUNTY MATHEMATICS CONTEST
 Luzerne County Council of Teachers of Mathematics
 Wilkes College - - 1975 Junior Examination

(Part I)
NAME \qquad SCHOOL

Directions: For each problem, write your answer in the space provided. Leave any answer which involves π or simplified radicals as it is - do not use approximations.

1. Solve simultaneously:

$$
\left\{\begin{array}{c}
2 x+y=4 \\
x+2 y=-1
\end{array}\right.
$$

1. \qquad
2. Solve:

$$
3 x^{2}=2 x+1
$$

3. An equilateral triangle has an altitude of length 3. Find the area of the triangle.
4. Find all values of x such that $|3-2 x|<7$.
5. A line has slope $3 / 2$ and passes through the point which has coordinates $(-2,4)$. Find an equation of the line in the form $a x+b y+c=0$ where a, b, and c are integers.
6. A circle has circumference C. Express the area, A, of the circle as a function of C.
7.
8.
9.
10. \qquad
11. \qquad
\qquad
\qquad
12. \qquad
13. If $\sin x=3 / 4$ and $90^{\circ}<x<180^{\circ}$, find $\tan x$.
14. Solve:

$$
3 \log x-\log 2 x=0
$$

8. \qquad
9. Solve:

$$
\sqrt{2 x^{2}-3 x+1}+4=2 x
$$

9. \qquad
10. A right triangle is inscribed in a circle of radius 5. If the length of one of the legs of the triangle is 7 , find the length of the other leg.
11. \qquad
12. If $f(x)=2 x+1$ and $g(x)=2 x+2$, find a rule of correspondence for $g(f(x))$.
13. \qquad
14. Find the circumference of a circle whose area is twice the area of a circle with circumference 6π.
15. \qquad
16. Solve:

$$
\frac{2 x}{x+1}+\frac{x-1}{x}=\frac{1}{x}
$$

14. Two boys on bicycles leave point A at the same moment, one boy heading north, the other heading east. They travel at constant speeds, one going two miles per hour faster than the other. Two hours after starting, they are 20 miles apart. How fast is the slower cyclist traveling in miles per hour?
15. \qquad
16. If f is a function with rule or correspondence

$$
f(x)=\sqrt{\frac{x}{2 x+1}}
$$

find the domain of f.
16. Find a quadratic equation with integral coefficients in the form $a x^{2}+b x+c=0$ having roots -1 and $3 / 5$.
16. \qquad
17. A rectangular box has square base and has lids on top and on bottom. If it has a total surface area of 1000 sq. ft., express the volume V as a function of x, where x is the length of the side of the square. (Neglect the thickness of the material.)
17.
15. \qquad
13. \qquad
\qquad
18. Simplify:

$$
\frac{\sqrt{x^{2}+1}-\frac{1}{\sqrt{x^{2}+1}}}{\frac{x^{2}}{\sqrt{x^{2}+1}}-\sqrt{x^{2}+1}}
$$

19. Write the number 25 as a number to the base 2 .
20. Find the y-intercept of the line which passes through the points having coordinates $(3,2)$ and $(-2,4)$.
21.
22. \qquad
23. \qquad
\qquad
24. Find:

$$
\sin ^{-1} \tan 5 \pi / 4
$$

21. \qquad
22. Let $f(x)=|x-2|+|x+2|$. Assuming that $x \geq 2$, find a and b such that $f(x)=a x+b$.
23. \qquad

NAME \qquad SCHOOL \qquad

1. If $f(x)=x 2+2$ for all real numbers x, find $f(x+2)$.
2. \qquad
3. A point P is 10 in . from the center of a circle having radius 6 in . Two distinct tangents to the circle from P have points of contact at Q and R. Find the length of $\overline{Q R}$ in inches.
4. If f is a function with rule or correspondence $f(x)=x / 3+1$, find a rule of correspondence for $f^{-1}(x)$, the inverse of $f(x)$.
5. Solve simultaneously:

$$
\left\{\begin{array}{c}
x^{2}-3 y^{2}=-11 \\
2 x-y=0
\end{array}\right.
$$

5. If a regular polygon has an exterior angle of measure 60°, how many sides has the polygon?
6.
7.
8. \qquad
9. \qquad
\qquad
\qquad
10. \qquad
11. \qquad
12. If $\log _{2} 3=a$, find $\log _{3} 8$ in terms of a.
13. If $f(x)=x^{2}+2 x-8$, find the set of all x such that $f(x)<0$.
14. \qquad
15. \qquad
16. Solve:

$$
x^{3}-x^{2}-3 x+2=0
$$

10. \qquad
11. A rectangle has perimeter 200. Express the area, A, of the rectangle as a function of the width, w, of the rectangle.
12. \qquad
13. Triangle $A B C$ has a right angle at C. If $\tan A=2 / 3$ and the length of $\overline{B C}=5$, find the length of $\overline{A B}$.
14. \qquad
15. Find an equation of the line which is perpendicular to the x-axis and passes through the point having coordinates $(3,5)$.
16. \qquad
17. \qquad
18. Find an equation of the circle which passes through the 3 points having coordinates $(0,0),(0,6)$, and $(8,0)$.
19. \qquad
20. A square is inscribed in a circle of radius 10. Find the area of the square.
21. \qquad
22. If $\cos A=3 / 8$, find $\cos (-A)$.
23. \qquad
24. A manufacturer produces x items at a total cost of $1000+$ $20 x-\frac{3 x}{10}$ dollars, and sells them for $500-x$ dollars each. Write his profit, $P(x)$, as a function of x.
25. \qquad
26. If three coins are tossed, find the probability that exactly 2 heads appear.
27. If a point P having coordinates (x, y) represents any point on the graph of $y=x^{2}+1$, express the distance, d, from P to the point having coordinates $(1,-1)$ as a function of x.
28.
29. \qquad
\qquad
30. Find a solution other than $x=3$ to the equation:

$$
\log _{3} x=\log _{x} 3
$$

21. \qquad
22. Find:

$$
\sin \left(2 \cos ^{-1} \frac{1}{3}\right)
$$

22. \qquad
