NAME \qquad SCHOOL \qquad
Directions: For each problem write your answer in the space provided. Do not use decimal approximations for $\pi, \sqrt{2}$, etc.

1. Simplify and express without negative exponents:

$$
\frac{a^{-2}\left(b^{2} c^{3}\right)^{-3}}{\left(a^{-5} b^{-4}\right)^{2} c^{-7}}
$$

1. \qquad
2. Find all values of x which satisfy $2 x^{2}+5 x-3=0$
3. \qquad
4. Given that $\cos \theta=\frac{4}{7}$ and $\overline{A B}=2$, find the length of $\overline{B C}$ in the right triangle ABC shown.

5. A circle is circumscribed about a square which has sides of length 4. Find the area of the circle.
6. \qquad
7. Find all values of x which satisfy the equation $4^{5 x}=(16)^{2 x-1}$
8. \qquad
9. Given that $f(x)=\frac{1}{x+1}$ and $g(x)=x-\frac{1}{x}$, find $f(g(2))$.
10. \qquad
11. Give all values of x for which the function $f(x)=\frac{\log x}{x-1}$ is defined.
12. \qquad
13. Give the coordinates of all points on the line $y=2$ which are 5 units away from the point $(3,-1) .8$
. \qquad
14. Find all values of x which satisfy the inequality $3 x-7>5 x+7$.
15. \qquad
16. In the figure shown, $A C \perp B C$, $D E \perp B C, \overline{A C}=15, \overline{D E}=6$. If the length of $E C$ is p, express the length of $B E$ in terms of p.

17. Find all values of x which satisfy $\log (x+3)+\log (x-3)=0$.
18. Solve the following system of equations:
$A-B-C=-4$
$3 A+B=14$
$4 A+2 B-c=20$
19. Find the coordinates of the midpoint of the line segment joining P and Q where P is the point $(4,-7)$ and Q is the point $(8,3)$.
20. Give the x and y intercepts of the ellipse $4 x^{2}+9 y^{2}=36$.
21. A salesman receives a base salary of $\$ 600$ per month plus a 5\% commission on all sales. Given that he earned a total of $\$ 1000$ last month, find the amount of his sales for the month.
22. Given that $x=1$ is a root of the polynomial $2 x^{3}-x^{2}-7 x+6=0$, find the other 2 roots.
23. Suppose $f(x)=A \log _{10} x+B$ for some constants A and B. If $f(1)=10$ and $f(10)=1$, find A and B.
24. Give the value of $\csc \left(\operatorname{Arcsin} \frac{1}{15}\right)$.
25. A regular 12 sided polygon is inscribed in a circle of radius r. Find the area of the polygon in terms of r.
26. How many even 3 digit numbers can be constructed using the digits $3,4,5,6,7$, if any of the digits may be used more than once in any given number? \qquad

NAME \qquad
\qquad

1. Give the radian measure of an angle with degree measure 72°.
2. Find all pairs (x,y) which satisfy the following system of equations:
$x^{2}-y=1$
$2 x-y=-3$
3. \qquad
4. Express . 0000157 as the product of an integer power of 10 and a number between 1 and 10 .
5. \qquad
6. Given that $\log _{b} 2=1.2$ and $\log _{b} 3=1.9$, find $\log _{b}\left(\frac{8}{9}\right)$.
7. Consider the function f whose graph is sketched below. List the letters of all those of the following statements which are true.

a) $f(2) \geq f(x)$ for all x
b) $f(x)<0$ if $-3<x<1$
c) $f(-1)<f(0)$
d) $f(-2)=-f(2)$
e) $f(-3)=-f(3)$
8. \qquad
9. A circle has a radius 10. Find the radius of a circle which has twice the area of the given circle.
10. \qquad
11. Given that $f(x)=x^{2}+1$, and $h \neq 0$, find $\frac{f(x+h)-f(x)}{h}$ and simplify.
12. Find all values of x (in radian) in the interval $[0,2 \pi)$ which satisfy the equation $2 \sin ^{2} x-\sin x=1$.
13. \qquad
14. \qquad
15. Find all values of x which satisfy the equation $\frac{3}{x+1}-\frac{2}{x}+1=0$.
16. \qquad
(OVER)
17. A right triangle is inscribed in a circle having diameter 17. If one of the legs of the triangle has length 8, find the area of the triangle.
18. \qquad
19. A ramp is to be installed at the entrance of a classroom building. The entrance is 2 feet from the ground, and the angle between the ramp and the ground should be 10 degrees. Which of the following gives the length of the ramp?
a) $\frac{2}{\cos 10^{\circ}}$
b) $\frac{\cos 10^{\circ}}{2}$
C) $\frac{2}{\sin 10^{\circ}}$
d) $\frac{\sin 10^{\circ}}{2}$
20. Given that $\sin t=\frac{1}{4}$ and $\cot t<0$, find $\cos t$.
21. A regular hexagon has sides of length 2. Find its area.
22. Determine all values of b so that the polynomial $x^{2}+b x+25$ has exactly one real root.
23. A right circular cone is inscribed in a sphere of radius 10 as shown. Express the volume of the cone as a function r. The radius of its base.

24. Find the coordinates of the vertex of the parabola $y=160 x-2 x^{2}$.
25. If $f(0)=1$ and $f(1)=1$ and, for all $k \geq 2$, $f(k)=f(k-1)+f(k-2)$, find $f(4)$.
26. If the lines $2 y+x+3=0$ and $3 y+a x+2=0$ meet at right angles, find the coordinates of their point of intersection.
27. \qquad
28. A set of 4 tubes in a radio consists of two good tubes and two defective ones. If 3 tubes are selected at random from this group, what is the probability that exactly two of three selected will be defective?
29. A circle is inscribed in a right triangle whose legs have lengths 6 and 8, respectively. Find the radius of the circle.

30.

NAME \qquad SCHOOL \qquad
Directions:For each problem write your answer in the space provided. Do not use decimal approximations for π, $\sqrt{2}$, etc.

1. Simplify and express without negative exponents:

$$
\frac{a^{2}\left(b^{2} c^{3}\right)^{-3}}{\left(a^{-5} b^{-4}\right)^{2} c^{-7}}
$$

1. \qquad
2. Determine A such that the point $(3,-2)$ is on the line $A x-2 y+7=0$.
3. Given that $\cos \theta=\frac{4}{7}$ and $c=2$, find b in the right triangle shown.

4. A circle is circumscribed about a square which has sides of length 4, and another circle is inscribed in the same square. Find the area of the region between the two circles.
5. \qquad
6. Find all values of x which satisfy the equation $4^{5 x}=\left(\frac{1}{16}\right)^{2 x-1}$
7. \qquad
8. \qquad $f(g(z))$.
9. Give all values of x for which the function $f(x)=\frac{\log x}{x-1} \quad$ is defined.
10. \qquad
11. Give the coordinates of all points on the line $y=2$ which are 5 units away from the point (3,-1).
12. \qquad
13. Find all values of x which satisfy the inequality $\frac{x+1}{2 x-3}>0$.
14. In the figure shown, $\triangle A B C$ is a right triangles with right angle at B. DEFB is a rectangle with $\overline{D B}=6$, $\overline{B F}=4$. If $\overline{A D}=3$, find $\overline{A C}$.

\qquad
15. Determine all values of x which satisfy the equation $\log _{10} x+\log _{10}(x-3)=1$.
16.

Given that $\frac{8 x^{2}-20 x+12}{x(x-2)^{2}}$ can be expressed in the form $\frac{A}{x}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}$, determine the constants A, B, and C .
13. Suppose $(-4,3)$ is the midpoint of the line segment forming P and Q, where P is the point $(8,-5)$. What are the coordinates of Q ?
14. Find the center and radius of the circle $4 x^{2}+16 x+4 y^{2}-24 y=48$.
15. The height of a tin can is 5 inches, and its lids are circles having radius 4 inches. Find the total surface area of the can (including lids) in square inches.
16. Given that $x=1$ is a root of the polynomial $2 x^{3}-x^{2}-7 x+6=0$, find the other two roots.
17. Suppose $f(x)=A \log _{10} x+B$ for some constants A and B. If $f(1)=10$ and $f(10)=1$, find A and B.
18. Use the addition formula $\sin (s+t)=$
$\sin s \cos t+\cos s \sin t$ to find $\sin \frac{7 \pi}{12}$.
19. A regular 12 -sided polygon is inscribed in a circle of radius r. Find the area of the polygon.
20. There are 50 new cars on a certain car lot. Suppose 30 of the cars have bucket seats; 27 have a radio; 22 have air-conditioning; 15 have bucket seats and a radio; 10 have air-conditioning and a radio; 12 have bucket seats and air-conditioning; and 5 of the cars have all three options. How many cars on the lot have none of the options?
11. \qquad
12. $A=$
\qquad
$\mathrm{C}=$
13. \qquad
14. center= \qquad radius= \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. \qquad
20. \qquad

NAME \qquad
\qquad

1. Give the radian measure of an angle with degree measure 72°.
2. \qquad
3. \qquad
4. \qquad
5. \qquad $\log _{b}\left(18 b^{3}\right)$.
6. Consider the function f whose graph is sketched below. List the letters of all those of the following statements which are true.

a) $f(2) \geq f(x)$ for all x
b) $f(x)<0$ if $-3<x<1$
c) $f(-1)<f(0)$
d) $f(-2)=-f(2)$
e) $f(x)<0$ only if $-3<x<1$
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. In chemistry, the concentration of hydrogen ions in a given substance is denoted H^{+}and is measured in molecules per liter. The pH of the substance is defined to be the number $p H=-\log _{10} H^{+}$. Given that the hydrogen ion concentration of beer is $H^{+}=.8 \times 10^{-4}$ molecules per liter, which of the following is the pH of beer?
a) $4 \log _{10}(.8)$
b) $5-\log _{10} 8$
C) $4-\log _{10} .8$
d) $5-\log _{10}(-8)$
14. Determine the amplitude, period, and phase shift of the function $f(x)=-3 \sin (2 x-\pi)$.
15. Find an equation of the circle having center $(2,2)$ and passing through the point (0,0). Express your answer in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$.
16. Determine all values of b so that the polynomial $x^{2}+b x+25$ has exactly one real root.
17. A water trough has ends which are isosceles trapezoids with sides as shown; its sides and bottom are rectangles. Find the volume of the trough in cubic feet.

18. Given that $f(x)=\frac{2 x+5}{3 x-4}$, determine the value of $f^{-1}(1)$, where f^{-1} denotes the inverse function of f.
19. If the solutions to $f(x)=0$ are -1 and 2 , find the solutions to $f\left(\frac{x}{2}\right)=0$.
20. A set of 4 tubes in a radio consists of two good tubes and two defective ones. If 3 tubes are selected at random from this group, what is the probability that exactly two of the three selected will be defective?
21. Find the smallest and largest of the following three numbers: $\sin 3, \cos 3, \csc 3$.
22. The diagonals $A C$ and $B D$ of quadrilateral $A B C D$ are perpendicular. If $\overline{A B}=2, \overline{B C}=3$, and $\overline{C D}=4$, find $\overline{D A}$.
23.
24. amp. $=$ \qquad period= phase shift= \qquad
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
31. smallest \qquad
largest \qquad
32. \qquad
