Luzerne County Council of Teachers of Mathematics

Wilkes University - 1984 Junior Examination

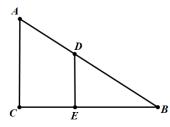
(Section 1)

NAME:	ADDRESS:		
SCHOOL:	CITY/ZIP:		
	TELEPHONE:		
Directions: For each problem write your a approximations for π , $\sqrt{2}$, etc. Simplify all	answer in the space provided. Do not use decimal answers.		
1) Find all values of x such that			
$\frac{2x}{x+2} - 1 = \frac{2x}{x^2}$	$\frac{c+4}{c-4}$		
	1)		
2) Determine k so that the line $6x + k$	-		
3) An isosceles right triangle has hypo	otenuse of length 2. Find 2)		
the length of one of its legs.	3)		
4) Solve for y if	<u> </u>		
3x + y = 4	4		
3x - y = 0)		
5) If f is a function such that	5)		
f(x) = 3 - 2x, (3 - 2x).	6)		
6) Find all values of x such that $ 2x +$	/		
7) A circle has a circumference of 10 i	in. Find its area in sq. in. 7)		
8) Solve for y in terms of x:			
$x^2y - x + y =$	= 1		
9) Find all values of x such that	9)		
$2^{ x-5 }=8$, <u> </u>		
10) The hypotenuse of a right triangle h	nas length 4 in. Find the 10)		
area of the triangle in sq. in.			

11) If $\sin \alpha = \frac{5}{13}$ where $0 < \alpha < \pi/2$, find $\tan \alpha$.

- 11)_____
- 12) Find the coordinates of the points of the intersection of the line y = 2x and the parabola $x^2 2x y = 0$.
- 12)_____
- **13)** A triangle has an area of 10. sq in. If each of its sides is doubled in length, what is the area of the resulting triangle?
- 13)_____

14) Find A and B such that

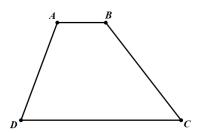

$$\frac{A}{x+3} + \frac{B}{x-2} = \frac{6x+8}{x^2+x-6}$$

14)_____

is an identity.

15) Find $\sin(Arccos(\frac{-2}{3}))$.

- 15)_____
- 16) x = 3 is a solution to the equation $x^3 10x + 3 = 0$. Find the other solutions.
- 16)_____
- 17) Triangle ABC is a right triangle with right angle at C. DE \perp BC. $\overline{AC} = 4$, $\overline{DE} = 2$, $\overline{EB} = 3$. Find \overline{AB} , the length of AB.



17)_____

- 18) A tin can in the shape of a right circular cylinder has volume 100π cu. In. Express the total surface area A of the can (including lids) as a function of the radius, r, of the lids.
- 18)_____

19) Solve for x if $\log_3\left(\frac{1}{x+1}\right) + \log_3(x+4) = 1$.

- 19)_____
- **20)** ABCD is a trapezoid with $\overline{AB} = 1$, $\overline{BC} = 3$, $\overline{CD} = 4$, and $\overline{DA} = 2$. Find the area of the trapezoid.

20)_____

Luzerne County Council of Teachers of Mathematics

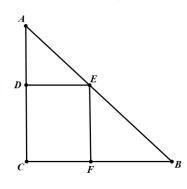
Wilkes University - 1984 Junior Examination

(Section 2)

NAME:	ADDRESS:		
SCHOOL:	CITY/ZIP:		
	TELEPHONE:		
Directions: For each problem write your answer approximations for π , $\sqrt{2}$, etc. Simplify all answer			
 Find all values of x such that x(x - 1) = In triangle ABC, AB = 13, AC = 12, a the length of the altitude to side AB. 	· · · · · · · · · · · · · · · · · · ·		
	2)		
3) Find the coordinates of the x-intercepts of $y = 2x^2 - 12x + 16$.	of the parabola 3)		
 4) Solve for x in terms of y if x²y - x + y 5) Find all values of x in the interval [0,2π] 	4)		
cos x. 6) Find all values of x such that $1 + \sqrt{2x + 1}$	$\frac{1}{6} = \sqrt{4x + 5}$.		
7) A bicycle tire has a diameter of 26 in. If the ridden for 1 mile, which of the following no	g numbers is the 6)		
best approximation of the number of rev will make?	7)		
(a) 2500 (b) 1250 (b) (c) 880 (d)1700	8)		
 8) Find all values of x such that x² * 2x 9) If log_b a = k and c = a² find log_b c in . 10) Find the coordinates of the vertex of the 	terms of k. 9)		
$x^2 + 4x - y = 0.$	10)		

- 11) Let f be a function defined by f(x) = 3x 4. Suppose g is a function such that f(g(x)) = x for all x. Find g(x).
- 11)_____

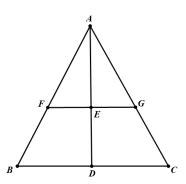
12) Which of the following is the best approximation (in degrees) of 1 radian?


12)_____

- (a) 1° (b) 30° (c) 60° (d) 90°
- 13) If |x-3| < 1, find the smallest value of a such that |2x+3| < a.

13)_____

14) Triangle ABC has a right angle at C. \overline{DEFC} is a rectangle. $\overline{AD} = 15, \overline{DE} = 20, \overline{EF} = 30$. Find the length of AB.


15)_____

- 15) Solve for x if $x^{\sqrt{\log x}} = 10^8$.
- **16)** If we divide $x^3 3x^2 + 2x + 4$ by $x^2 2$, we find that $\frac{x^3 3x^2 + 2x + 4}{x^2 2} = x 3 + \frac{f(x)}{x^2 2}$ Find f(x).

- 16)_____
- 17) Suppose $f(x) = ax^2 + 2x + 5$. Determine a so that f(1) = f(-2).
- 17)_____
- **18)** A rectangular box (with lids) has a square base, a height of 8 in. and a volume of 400 cu. in. Find the total surface area of the box.
- 18)_____

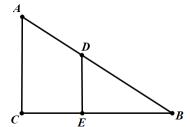
19) Find all values of x in the interval $[0,2\pi]$ such that $\cos\left(\frac{x}{2}\right) = \frac{1}{2}$.

- 19)_____
- **20)** Triangle ABC is equilateral with sides of length 2 in. FG \parallel BC and AD \perp BC. If $\overline{AE} = 1$ in., find the area of \triangle AFG.
- 20)

Luzerne County Council of Teachers of Mathematics

Wilkes University - 1984 Senior Examination

(Section 1)


NAME	2: A	DDRESS:
SCHO	OL:	CITY/ZIP:
	Т	ELEPHONE:
	ions: For each problem write your answer in th	e space provided. Do not use decimal
approx	timations for π , $\sqrt{2}$, etc. Simplify all answers.	
1)	Find all values of x such that $\frac{2x}{x-2} - 1 = \frac{2x+4}{x^2-4}$	1)
2)	Determine k so that the line $6x + ky - 7 = 0$	is 2)
	perpendicular to the line $3x - 2y + 4 = 0$.	2)
3)	An isosceles right triangle has hypotenuse of le	ength 2 in.
	Find the area of the triangle in sq. in.	3)
4)	Find all values of x in the interval $[0,2\pi]$ such t	hat 4)
	$2\sin x - 1 = 0.$	*)
5)	Find all values of x such that $ 7 - 2x < 5$.	5)
6)	The graph of the equation $x^2 + y^2 - 4x + 6y$	
	circle. Find the coordinates of its center.	6)
7)	Express the area A of a circle as a function of it	, <u> </u>
	circumference C.	7)
8)	Solve for y in terms of x:	.,
	$\frac{x-y}{x} = x + y.$	8)
9)	Find all values of x such that $2^{ x^2+3x-1 } = 8$	•
10)	The hypotenuse of a right triangle has length 2	$\sqrt{5}$ in. and 9)
	one leg has length 4 in. Find the area of the tria	-
	in.	10)

- 11) If $\sin \alpha = \frac{5}{13}$ where $\pi/2 < \alpha < \pi$, find $\tan \alpha$.
- 12) Find the coordinates of the points of intersection of the line y = 2x and the parabola $x^2 2x y = 0$.
- 11) _____
- **13)** Which of the following numbers is the best approximation of sin 1?
- 12) _____

- (a) -0.5 (b) 0
- (c) 0.5 (d) 0.8 (e) 1.0
- **14)** Find A and B so that $\frac{A}{x+3} + \frac{B}{x-2} = \frac{6x+8}{x^2+x-6}$ is an identity.
- 13) _____

15) Find, in terms of x, sin(Arccos x).

- 14) _____
- 16) Find all values of x such that $x^3 10x + 3 = 0$. 17) Triangle ABC is a right triangle with right angle at C. DE \perp
- 15)
- BC. $\overline{AC} = 4$, $\overline{DE} = 2$, and $\overline{EB} = 3$. Find the length of AB.
- 16) _____

17)

- 18) A tin can in the shape of a right circular cylinder has volume 100π cu. in. Express the total surface area A of the can (including the lids) as a function of the radius r of its lids.
- 18)

- 19) Solve for x if
 - $\log_3\left(\frac{1}{x+1}\right) = 1 \log_3(x+4).$

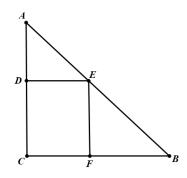
- 19) _____
- **20)** ABCD is a trapezoid with $\overline{AB} = 1$, $\overline{BC} = 3$, $\overline{CD} = 4$, and $\overline{DA} = 2$. Find the area of the trapezoid.

Luzerne County Council of Teachers of Mathematics

Wilkes University - 1984 Senior Examination

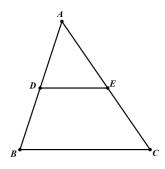
(Section 2)

NAME:	ADDRESS:
	CITY/ZIP:
	TELEPHONE:
Directions: For each problem write approximations for π , $\sqrt{2}$, etc. Simplify	your answer in the space provided. Do not use decimal ify all answers.
 Find all values of x such that In triangle ABC, AB = 2, AC length of the altitude to side I 	= 4, and \overline{BC} = 4. Find the
	2)
3) Find the coordinates of the x-	intercents of the parabola $v =$
$2x^2 - 12x + 16.$ 4) Solve for x in terms of y if $\frac{x^2}{x^2}$	4)
5) Find all values of x in the inte	•
sin x > cos x . 6) Find all values of x such that	6)
$\sqrt{4x+5} - \frac{1}{2}$ 7) Find $\cos(2 Arcsin^3/5)$.	$\sqrt{2x+6} = 1.$ 7)
8) Find all values of x such that 9) If $\log_b a + \log_b c = m$, find 1	0)
10) Find the coordinates of the very $x^2 + 4x + y = x^2$	ertex of the parabola 9)
λ 1 Tλ 1 y	- 0. 10)


- 11) If f is a function such that $f(x + y) = f(x) \cdot f(y)$ for all real numbers x and y, and f(1) = 3, find f(3).
- 11) _____

12) If $f(x) = \frac{\cos x}{x}$ which of the following is the best approximation of f(100)?

12) _____


13) If |x-3| < 1, find the smallest value of a such that |2x+3| < a.

- 13) _____
- 14) Triangle ABC has a right angle at C. \overline{DEFC} is a rectangle. $\overline{AD} = 15, \overline{DE} = 20, \overline{EF} = 30$. Find the length of AB.

14) _____

- 15) Solve for x if $x^{\sqrt{\log x}} = 10^8$.
- 16) If we divide $x^3 3x^2 + 2x + 4$ by $x^2 2$, we find that $\frac{x^3 3x^2 + 2x + 4}{x^2 2} = x 3 + \frac{f(x)}{x^2 2}$ Find f(x).
- 15) _____
- 17) Suppose $f(x) = ax^2 + 2x + 5$. Determine a so that f(1) = f(-2).
- 16) _____
- **18)** In triangle ABC, $DE \parallel BC, \overline{AD} = 5$ and $\overline{DB} = 6$. Find the ratio of the area of $\triangle ADE$ to the area of the trapezoid DECB.
- 17) _____

18)

- 19) Find all values of x in the interval $[0,2\pi]$ such that $\cos\left(\frac{x}{2}\right) = \frac{1}{2}$.
- **20)** A circle is tangent to the line y = 2x + 2 at the point (2,6), and has its center on the x axis. Find the radius of the circle.
- 19) _____
- 20) _____