Luzerne County Council of Teachers of Mathematics Wilkes University - 1984 Junior Examination (Section 1) | NAME: | ADDRESS: | | | |--|---|--|--| | SCHOOL: | CITY/ZIP: | | | | | TELEPHONE: | | | | Directions: For each problem write your a approximations for π , $\sqrt{2}$, etc. Simplify all | answer in the space provided. Do not use decimal answers. | | | | 1) Find all values of x such that | | | | | $\frac{2x}{x+2} - 1 = \frac{2x}{x^2}$ | $\frac{c+4}{c-4}$ | | | | | 1) | | | | 2) Determine k so that the line $6x + k$ | - | | | | 3) An isosceles right triangle has hypo | otenuse of length 2. Find 2) | | | | the length of one of its legs. | 3) | | | | 4) Solve for y if | <u> </u> | | | | 3x + y = 4 | 4 | | | | 3x - y = 0 |) | | | | 5) If f is a function such that | 5) | | | | f(x) = 3 - 2x, (3 - 2x). | 6) | | | | 6) Find all values of x such that $ 2x +$ | / | | | | 7) A circle has a circumference of 10 i | in. Find its area in sq. in. 7) | | | | 8) Solve for y in terms of x: | | | | | $x^2y - x + y =$ | = 1 | | | | 9) Find all values of x such that | 9) | | | | $2^{ x-5 }=8$ | , <u> </u> | | | | 10) The hypotenuse of a right triangle h | nas length 4 in. Find the 10) | | | | area of the triangle in sq. in. | | | | 11) If $\sin \alpha = \frac{5}{13}$ where $0 < \alpha < \pi/2$, find $\tan \alpha$. - 11)_____ - 12) Find the coordinates of the points of the intersection of the line y = 2x and the parabola $x^2 2x y = 0$. - 12)_____ - **13)** A triangle has an area of 10. sq in. If each of its sides is doubled in length, what is the area of the resulting triangle? - 13)_____ 14) Find A and B such that $$\frac{A}{x+3} + \frac{B}{x-2} = \frac{6x+8}{x^2+x-6}$$ 14)_____ is an identity. 15) Find $\sin(Arccos(\frac{-2}{3}))$. - 15)_____ - 16) x = 3 is a solution to the equation $x^3 10x + 3 = 0$. Find the other solutions. - 16)_____ - 17) Triangle ABC is a right triangle with right angle at C. DE \perp BC. $\overline{AC} = 4$, $\overline{DE} = 2$, $\overline{EB} = 3$. Find \overline{AB} , the length of AB. 17)_____ - 18) A tin can in the shape of a right circular cylinder has volume 100π cu. In. Express the total surface area A of the can (including lids) as a function of the radius, r, of the lids. - 18)_____ **19)** Solve for x if $\log_3\left(\frac{1}{x+1}\right) + \log_3(x+4) = 1$. - 19)_____ - **20)** ABCD is a trapezoid with $\overline{AB} = 1$, $\overline{BC} = 3$, $\overline{CD} = 4$, and $\overline{DA} = 2$. Find the area of the trapezoid. 20)_____ Luzerne County Council of Teachers of Mathematics Wilkes University - 1984 Junior Examination (Section 2) | NAME: | ADDRESS: | | | |--|---------------------------------------|--|--| | SCHOOL: | CITY/ZIP: | | | | | TELEPHONE: | | | | Directions: For each problem write your answer approximations for π , $\sqrt{2}$, etc. Simplify all answer | | | | | Find all values of x such that x(x - 1) = In triangle ABC, AB = 13, AC = 12, a the length of the altitude to side AB. | · · · · · · · · · · · · · · · · · · · | | | | | 2) | | | | 3) Find the coordinates of the x-intercepts of $y = 2x^2 - 12x + 16$. | of the parabola 3) | | | | 4) Solve for x in terms of y if x²y - x + y 5) Find all values of x in the interval [0,2π] | 4) | | | | cos x. 6) Find all values of x such that $1 + \sqrt{2x + 1}$ | $\frac{1}{6} = \sqrt{4x + 5}$. | | | | 7) A bicycle tire has a diameter of 26 in. If the ridden for 1 mile, which of the following no | g numbers is the 6) | | | | best approximation of the number of rev will make? | 7) | | | | (a) 2500 (b) 1250
(b) (c) 880 (d)1700 | 8) | | | | 8) Find all values of x such that x² * 2x 9) If log_b a = k and c = a² find log_b c in . 10) Find the coordinates of the vertex of the | terms of k. 9) | | | | $x^2 + 4x - y = 0.$ | 10) | | | - 11) Let f be a function defined by f(x) = 3x 4. Suppose g is a function such that f(g(x)) = x for all x. Find g(x). - 11)_____ **12)** Which of the following is the best approximation (in degrees) of 1 radian? 12)_____ - (a) 1° (b) 30° (c) 60° (d) 90° - 13) If |x-3| < 1, find the smallest value of a such that |2x+3| < a. 13)_____ 14) Triangle ABC has a right angle at C. \overline{DEFC} is a rectangle. $\overline{AD} = 15, \overline{DE} = 20, \overline{EF} = 30$. Find the length of AB. 15)_____ - 15) Solve for x if $x^{\sqrt{\log x}} = 10^8$. - **16)** If we divide $x^3 3x^2 + 2x + 4$ by $x^2 2$, we find that $\frac{x^3 3x^2 + 2x + 4}{x^2 2} = x 3 + \frac{f(x)}{x^2 2}$ Find f(x). - 16)_____ - 17) Suppose $f(x) = ax^2 + 2x + 5$. Determine a so that f(1) = f(-2). - 17)_____ - **18)** A rectangular box (with lids) has a square base, a height of 8 in. and a volume of 400 cu. in. Find the total surface area of the box. - 18)_____ 19) Find all values of x in the interval $[0,2\pi]$ such that $\cos\left(\frac{x}{2}\right) = \frac{1}{2}$. - 19)_____ - **20)** Triangle ABC is equilateral with sides of length 2 in. FG \parallel BC and AD \perp BC. If $\overline{AE} = 1$ in., find the area of \triangle AFG. - 20) Luzerne County Council of Teachers of Mathematics Wilkes University - 1984 Senior Examination (Section 1) | NAME | 2: A | DDRESS: | |--------|--|--------------------------------------| | SCHO | OL: | CITY/ZIP: | | | Т | ELEPHONE: | | | ions: For each problem write your answer in th | e space provided. Do not use decimal | | approx | timations for π , $\sqrt{2}$, etc. Simplify all answers. | | | 1) | Find all values of x such that $\frac{2x}{x-2} - 1 = \frac{2x+4}{x^2-4}$ | 1) | | 2) | Determine k so that the line $6x + ky - 7 = 0$ | is 2) | | | perpendicular to the line $3x - 2y + 4 = 0$. | 2) | | 3) | An isosceles right triangle has hypotenuse of le | ength 2 in. | | | Find the area of the triangle in sq. in. | 3) | | 4) | Find all values of x in the interval $[0,2\pi]$ such t | hat 4) | | | $2\sin x - 1 = 0.$ | *) | | 5) | Find all values of x such that $ 7 - 2x < 5$. | 5) | | 6) | The graph of the equation $x^2 + y^2 - 4x + 6y$ | | | | circle. Find the coordinates of its center. | 6) | | 7) | Express the area A of a circle as a function of it | , <u> </u> | | | circumference C. | 7) | | 8) | Solve for y in terms of x: | ., | | | $\frac{x-y}{x} = x + y.$ | 8) | | 9) | Find all values of x such that $2^{ x^2+3x-1 } = 8$ | • | | 10) | The hypotenuse of a right triangle has length 2 | $\sqrt{5}$ in. and 9) | | | one leg has length 4 in. Find the area of the tria | - | | | in. | 10) | - 11) If $\sin \alpha = \frac{5}{13}$ where $\pi/2 < \alpha < \pi$, find $\tan \alpha$. - 12) Find the coordinates of the points of intersection of the line y = 2x and the parabola $x^2 2x y = 0$. - 11) _____ - **13)** Which of the following numbers is the best approximation of sin 1? - 12) _____ - (a) -0.5 (b) 0 - (c) 0.5 (d) 0.8 (e) 1.0 - **14)** Find A and B so that $\frac{A}{x+3} + \frac{B}{x-2} = \frac{6x+8}{x^2+x-6}$ is an identity. - 13) _____ **15)** Find, in terms of x, sin(Arccos x). - 14) _____ - 16) Find all values of x such that $x^3 10x + 3 = 0$. 17) Triangle ABC is a right triangle with right angle at C. DE \perp - 15) - BC. $\overline{AC} = 4$, $\overline{DE} = 2$, and $\overline{EB} = 3$. Find the length of AB. - 16) _____ 17) - 18) A tin can in the shape of a right circular cylinder has volume 100π cu. in. Express the total surface area A of the can (including the lids) as a function of the radius r of its lids. - 18) - 19) Solve for x if - $\log_3\left(\frac{1}{x+1}\right) = 1 \log_3(x+4).$ - 19) _____ - **20)** ABCD is a trapezoid with $\overline{AB} = 1$, $\overline{BC} = 3$, $\overline{CD} = 4$, and $\overline{DA} = 2$. Find the area of the trapezoid. Luzerne County Council of Teachers of Mathematics Wilkes University - 1984 Senior Examination (Section 2) | NAME: | ADDRESS: | |--|--| | | CITY/ZIP: | | | TELEPHONE: | | Directions: For each problem write approximations for π , $\sqrt{2}$, etc. Simplify | your answer in the space provided. Do not use decimal ify all answers. | | Find all values of x such that In triangle ABC, AB = 2, AC length of the altitude to side I | = 4, and \overline{BC} = 4. Find the | | | 2) | | 3) Find the coordinates of the x- | intercents of the parabola $v =$ | | $2x^2 - 12x + 16.$ 4) Solve for x in terms of y if $\frac{x^2}{x^2}$ | 4) | | 5) Find all values of x in the inte | • | | sin x > cos x . 6) Find all values of x such that | 6) | | $\sqrt{4x+5} - \frac{1}{2}$ 7) Find $\cos(2 Arcsin^3/5)$. | $\sqrt{2x+6} = 1.$ 7) | | 8) Find all values of x such that
9) If $\log_b a + \log_b c = m$, find 1 | 0) | | 10) Find the coordinates of the very $x^2 + 4x + y = x^2$ | ertex of the parabola 9) | | λ 1 Tλ 1 y | - 0.
10) | - 11) If f is a function such that $f(x + y) = f(x) \cdot f(y)$ for all real numbers x and y, and f(1) = 3, find f(3). - 11) _____ 12) If $f(x) = \frac{\cos x}{x}$ which of the following is the best approximation of f(100)? 12) _____ 13) If |x-3| < 1, find the smallest value of a such that |2x+3| < a. - 13) _____ - 14) Triangle ABC has a right angle at C. \overline{DEFC} is a rectangle. $\overline{AD} = 15, \overline{DE} = 20, \overline{EF} = 30$. Find the length of AB. 14) _____ - 15) Solve for x if $x^{\sqrt{\log x}} = 10^8$. - 16) If we divide $x^3 3x^2 + 2x + 4$ by $x^2 2$, we find that $\frac{x^3 3x^2 + 2x + 4}{x^2 2} = x 3 + \frac{f(x)}{x^2 2}$ Find f(x). - 15) _____ - 17) Suppose $f(x) = ax^2 + 2x + 5$. Determine a so that f(1) = f(-2). - 16) _____ - **18)** In triangle ABC, $DE \parallel BC, \overline{AD} = 5$ and $\overline{DB} = 6$. Find the ratio of the area of $\triangle ADE$ to the area of the trapezoid DECB. - 17) _____ 18) - 19) Find all values of x in the interval $[0,2\pi]$ such that $\cos\left(\frac{x}{2}\right) = \frac{1}{2}$. - **20)** A circle is tangent to the line y = 2x + 2 at the point (2,6), and has its center on the x axis. Find the radius of the circle. - 19) _____ - 20) _____