LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes College - - 1985 Junior Examination

(Section I)

NAME:
SCHOOL: \qquad
Directions: For each problem write your answer in the space provided. Do not use decimal approximation for $\pi, \sqrt{2}$, etc. Simplify all answer.

1. Find all values of x such that $x^{2}=8 x$.
2. Find an equation of the line through the point ($-5,6$) and perpendicular to the x axis.
3. If $f(x)=\frac{x+8}{x-2}$ what is $\mathrm{f}(\mathrm{f}(7))$?
4. $\triangle A B C$ is a right triangle with right angle at C .

$$
\text { If } \overline{A B}=17 \text { and } \overline{B C}+15 . \text { Find } \overline{A C} .
$$

5. Determine k so that the point $(3,-2)$ is on the line $k x-2 y+7=0$.
6. \qquad
7. \qquad
8. center \qquad
radius \qquad
9. In $A B C, \overline{A B}=7, \overline{A C}=7$ and $\overline{B C}=8$. Find the length of the altitude to side AC.
10. \qquad
11. Find all ordered pairs (x, y) satisfying both of the
equations $4 x-3 y=2$

$$
7 x+y=6
$$

9. \qquad
10. Solve for x in the terms of $\mathrm{y}: 2 y=\frac{x-2}{3 x-1}$
11. \qquad
12. If f is a linear function such that $f(-1)=8$
and $f(2)=5$, find $f(x)$.
13. \qquad
14. In quadrilateral $A B C D, A B \perp B C$ and $D C \perp B C$. $\overline{A B}=4, \overline{D C}=3$, and $\overline{B C}=2$.

Find the area of the quadrilateral.
13. Find all x in the interval $[0,2 \pi]$ satisfying
$2 \sin ^{2} x-\sin x-1=0$.
14. Give an equation of the ellipse centered at the origin with x -intercepts ± 7 and y -intercepts ± 2.
15. Given that $x=-\frac{1}{2}$ is a solution t the equation $2 x^{3}-7 x^{2}+2 x+3=0$, find all other solutions.
16. $\triangle A B C$ is inscribed in a circle, with AB as a diameter. If the radius of the circle is 5 , express the area A of the triangle as a function of x, where x is the length of side $B C$.
17. Find all x such that $\frac{4}{x}<\frac{3}{5}$.
18. Two trains leave the same city at the same time traveling at constant speeds. One train, going north, travels 20 mph faster than the other, which is going east. If they are 300 miles apart after 5 hours, what is the speed of the northbound train in mph to the nearest multiple of 10 ?
19. The number $2^{48}-1$ is exactly divisible by two numbers between 60 and 70 . What are these two numbers?
20. Given that $A B, E F$, and $C D$ are perpendicular to $B D$ and that

$$
\overline{A B}=10, \overline{B D}=30, \text { and } \overline{C D}=20, \text { find } \overline{E F}
$$

12. \qquad
13. \qquad
14. \qquad
15. \qquad
16. $A(x)=$
17. \qquad
18. \qquad
19. \qquad
20. \qquad
\qquad

1. Find all x such that $\frac{|x+2|}{5}=3$.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. Suppose $f(x)=3 x^{2}-x$ and $h \neq 0$.

Find $\frac{f(x+h)-f(x)}{h}$ and simplify.
10. \qquad
(Over)
11. Find x if the point ($x,-4$) lies on the line
which passes through the points $(0,8)$ and $(-4,0)$.
11. \qquad
12. Find the radius of the circle circumscribed about an equilateral triangle having sides of length 10.
13. Find all x in the interval $[0, \pi]$ satisfying $2 \cos 2 x=1$.
14. Which is smallest?
(a) $3+\sqrt[3]{25}$
(b) $\sqrt[3]{200}$
(c) $2+\sqrt{17}$
(d) 2π
15. If $x=\log _{8} 225$ and $y=\log _{2} 15$, find x in terms of y.
16. A square has sides of length s. A circle has area twice the area of the square. Express the radius of the circle in terms of s.
17. Find the center and radius of the circle which passes through the points (5,3$),(-2,-4)$, and ($2,-6$).
. Find the radius of the inscribed circle of $\triangle A B C$

$$
\text { if } \overline{A B}=6, \overline{B C}=7 \text { and } \overline{C A}=5 \text {. }
$$

18. \qquad
19. Points A, B, C, D and E are on a circle as shown. The measure of $\operatorname{arc} \widehat{B C}$ is 42° and the measure of arc $\widehat{C D}$ is 38°. Find the sum of the measures of angles P and C .

20. Towns A and B are connected by a highway. A truck leaves town A headed for town B at a constant speed. At the same moment a car leaves town B headed for town A at a constant speed. After they pass each other at a point between A and B, it takes the truck $2 \frac{1}{4}$ hours to complete its trip and it takes the car 1 hour to complete its trip. What is the total time (in hours) of the truck's trip?
21. \qquad
(OVER)

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics

Wilkes College - - 1985 Senior Examination
(Section I)

NAME:

\qquad SCHOOL: \qquad
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals, and rationalize denominators. Your answer must be complete to receive credit for a problem.

1. Find all values of x such that $2 x^{2}+5 x+2=0$.
2. Find an equation of the line through the point $(-5,6)$ and perpendicular to the line $x+3 y=7$.
3. If $\mathrm{f}(\mathrm{x})=\frac{x+8}{x-2}$, what is $f(f(x))$?
4. Find the measure (in degrees) of an interior angle of a rectangle pentagon.
5. Determine k so that the point ($3,-2$) is on the line

$$
\mathrm{kx}-2 \mathrm{y}+7=0
$$

6. Suppose $-\pi \leq \theta \leq \pi$ and $\cos \theta=\frac{24}{25}$. What is $\sin \theta$?
7.Find the center and radius of the circle $3 x^{2}-9 x+3 y^{2}+6 y=0$.
7. In $\triangle A B C, \overline{A B}=7, \overline{A C}=7$, and $\overline{B C}=8$. Find the length of the Altitude of side AC.
8. Find all ordered pairs (x, y) satisfying both of the equations

$$
\begin{array}{r}
x^{2}-2 x-y=1 \\
5 x-y=13
\end{array}
$$

10. Solve for x in terms of y :

$$
y=\frac{2 x-5}{x+3}
$$

5. \qquad
6. \qquad
7.
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. A chemical solution is heated in such a way that the temperature T is a linear function of time t . If the initial temperature is 80° and the temperature after 20 minutes is 90°, find a general expression for the temperature $T(t)$
after t minutes.
16. In quadrilateral $A B C D, A B \perp B C$ and $D C \perp B C$. $\overline{A B}=4, \overline{D C}=3$, and $\overline{B C}=2$. Find the area of the quadrilateral.

17. Find all x in the interval $[0,2 \pi]$ satisfying $\sin ^{2} x-3 \cos ^{2} x=0$.
18. $\mathrm{T}(\mathrm{t})=$
19. \qquad
20. \qquad
21. \qquad
22. \qquad
23. $A(x)=$ sq.in.
24. \qquad
25. \qquad
26. $\mathrm{m}^{2}=$
27. Given that AB, EF, and CD are perpendicular to BD and that

$$
\overline{A B}=10, \overline{B D}=30, \text { and } \overline{C D}=20, \text { find } \overline{E F} .
$$

20. \qquad
(OVER)

NAME: \qquad

1. Find all x such that $\left|\frac{x+2}{x+6}\right|=3$
2. Find the coordinates of the vertex of the parabola

$$
x=2 y^{2}-8 y+9
$$

SCHOOL:

\qquad

1. \qquad
2. \qquad
3.A track is in the shape of a rectangle with semicircles at Two opposite sides. If the perimeter of the track is 400 Meters, express the total area A of the figure as a function of r, the radius of the semicircles.
3. Find all x in the interval $[0,2 \pi]$ satisfying $2 \cos 2 x=1$.
4. Find all x such that $\sqrt{x-3}+\sqrt{x+5}=4$.
5. Determine x such that $8^{x+2}=4^{3 x-1}$
6. What is the domain of the function $f(x)=x \log (-x+3)-10$?
7. A square and a circle have equal perimeters. Find the ratio of the area of the circle to the area of the square.
9.Find x if the point ($x,-4$) lies on the line which passes through the points $(0,8)$ and $(-4,0)$.
8. Which of the following is the best approximation of

$$
\begin{aligned}
& \frac{\pi^{2}}{\cos 1} . \\
& \text { (a) } 100 \\
& \text { (b) } 10 \\
& \text { (c) } 20 \\
& \text { (d) } 0
\end{aligned}
$$

7. \qquad
8. \qquad
9. \qquad
10. \qquad
(OVER)
11. Suppose $\mathrm{f}(\mathrm{x})=\frac{2}{x+1}$ and $\mathrm{h} \neq 0$. Determine $\frac{f(x+h)-f(x)}{h}$ and simplify.
12. \qquad
13. Find the radius of the circle circumscribed about $\triangle A B C$ if $\overline{A B}=5$, $\overline{A C}=5$, and $\overline{B C}=9$.
13.Suppose $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ and $\sin \theta=a$. Express $\sin 20$ in terms of a.
14. Which is smallest?
(a) $3+\sqrt[3]{25}$
(b) $\sqrt[3]{200}$
(c) $2+\sqrt{17}$
(d) 2π
15. If $x=\log _{8} 225$ and $y=\log _{2} 15$, find x in terms of y.
16. A square has sides of length s. A circle has area twice the area of the square. Express the radius of the circle in terms of s.
17. Find the center and radius of the circle which passes through the points (5,3$),(-2,-4)$, and ($2,-6$).
18. Find the radius of the inscribed circle of $\triangle A B C$

$$
\text { if } \overline{A B}=6, \overline{B C}=7 \text { and } \overline{C A}=5
$$

18.
19. center \qquad radius \qquad
\qquad
20. Points A, B, C, D and E are on a circle as shown. The measure of $\operatorname{arc} \widehat{B C}$ is 42° and the measure of $\operatorname{arc} \widehat{C D}$ is 38°. Find the sum of the measures of angles P and C .

21.
22. $\mathrm{r}=$ \qquad
23. \qquad
24. \qquad
25.

\qquad
12. \qquad
13. \qquad

- radius

