LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics

Wilkes College - - 1985 Junior Examination

(Section I)

NAME:_____

SCHOOL:_____

Directions: For each problem write your answer in the space provided. Do not use

decimal approximation for π , $\sqrt{2}$, etc. Simplify all answer.

1. Find all values of x such that $x^2 = 8x$.	1
2. Find an equation of the line through the	
point (-5,6) and perpendicular to the x axis.	2
3. If $f(x) = \frac{x+8}{x-2}$ what is f (f (7))?	3
4. ΔABC is a right triangle with right angle at C.	
If \overline{AB} = 17 and \overline{BC} + 15. Find \overline{AC} .	4
5. Determine k so that the point (3,-2) is on the	
line $kx - 2y + 7 = 0$.	5
6. Suppose $0 \le \theta \le \pi$ and $\cos \theta = \frac{24}{25}$. What is $\sin \theta$.	6
7. Find the center and radius of the circle $x^2 + y^2 - 2y = 3$.	7. center
	radius
8. In <i>ABC</i> , $\overline{AB} = 7$, $\overline{AC} = 7$ and $\overline{BC} = 8$. Find the length	
of the altitude to side AC.	8
9. Find all ordered pairs (x , y) satisfying both of the	
equations $4x - 3y = 2$	
7x + y = 6	9
10. Solve for x in the terms of y : $2y = \frac{x-2}{3x-1}$	10
	(OVER)

11. If f is a linear function such that $f(-1) = 8$	
and f (2) = 5, find f (x).	11
12. In quadrilateral ABCD, $AB \perp BC$ and $DC \perp BC$.	
$\overline{AB} = 4, \overline{DC} = 3, and \overline{BC} = 2.$	
Find the area of the quadrilateral.	12
13. Find all x in the interval [0, 2π] satisfying	
$2\sin^2 x - \sin x - 1 = 0.$	13
14. Give an equation of the ellipse centered at the	
origin with x-intercepts ± 7 and y-intercepts ± 2.	14
15. Given that $x = -\frac{1}{2}$ is a solution t the equation	
$2x^3 - 7x^2 + 2x + 3 = 0$, find all other solutions.	15
16. ΔABC is inscribed in a circle, with AB as a diameter.	
If the radius of the circle is 5, express the area A of the	
triangle as a function of x, where x is the length of side BC.	16. <u>A(x)=</u>
17. Find all x such that $\frac{4}{x} < \frac{3}{5}$.	17
18. Two trains leave the same city at the same time traveling	
at constant speeds. One train, going north, travels 20 mph	
faster than the other, which is going east. If they are 300 miles	
apart after 5 hours, what is the speed of the northbound train in	
mph to the nearest multiple of 10?	18
19. The number $2^{48} - 1$ is exactly divisible by two numbers between	
60 and 70. What are these two numbers?	19
20. Given that AB, EF, and CD are perpendicular to BD and that	
$\overline{AB} = 10, \overline{BD} = 30, \text{ and } \overline{CD} = 20, \text{ find } \overline{EF}.$	20
A	
E	(OVER)
B F	

Junior Examination, 1985

(Section II)

11. Find x if the point (x , -4) lies on the line			
which passes through the points (0 , 8) and (-4 , 0).	11		
12. Find the radius of the circle circumscribed			
about an equilateral triangle having sides of			
length 10.	12		
13. Find all x in the interval [0, π] satisfying			
2 cos 2x = 1.	13		
14. Which is smallest?			
(a) 3 + $\sqrt[3]{25}$ (b) $\sqrt[3]{200}$			
(c) $2 + \sqrt{17}$ (d) 2π	14		
15. If x = $\log_8 225$ and y = $\log_2 15$, find x in terms of y.	15		
16. A square has sides of length s. A circle has area twice the			
area of the square. Express the radius of the circle in terms of s.	16		
17. Find the center and radius of the circle which			
passes through the points (5, 3), (-2, -4), and (2, -6).	17.center		
	radius		
18. Find the radius of the inscribed circle of ΔABC			
if $\overline{AB} = 6$, $\overline{BC} = 7$ and $\overline{CA} = 5$.	18		
19. Points A, B, C, D and E are on a circle as shown. The measure of			
arc \widehat{BC} is 42° and the measure of arc \widehat{CD} is 38°. Find the sum of the			
measures of angles P and C.	C 19		
20. Towns A and B are connected by a highway. A truck leaves town A			
headed for town B at a constant speed. At the same moment a car leaves			
town B headed for town A at a constant speed. After they pass each other			
at a point between A and B, it takes the truck 2 $\frac{1}{4}$ hours to complete its trip			
and it takes the car 1 hour to complete its trip. What is the total tin	ne		
(in hours) of the truck's trip?	20		

(OVER)

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics

Wilkes College - - 1985 Senior Examination

(Section I)

NAME:SCH	IOOL:
Directions: For each problem, write your answer in the space pro-	vided. Do not use
approximations. Simplify all fractions and radicals, an	d rationalize
denominators. Your answer must be complete to recei	ve credit for a problem.
1. Find all values of x such that $2x^2 + 5x + 2 = 0$.	1
2. Find an equation of the line through the point (-5, 6) and	
perpendicular to the line $x + 3y = 7$.	2
3. If f (x) = $\frac{x+8}{x-2}$, what is $f(f(x))$?	3
4. Find the measure (in degrees) of an interior angle of a	
rectangle pentagon.	4
5. Determine k so that the point (3, -2) is on the line	
kx -2y + 7 = 0.	5
6. Suppose – $\pi \le \theta \le \pi$ and $\cos \theta = \frac{24}{25}$. What is $\sin \theta$?	6
7.Find the center and radius of the circle $3x^2 - 9x + 3y^2 + 6y = 0$.	7
8. In $\triangle ABC$, $\overline{AB} = 7$, $\overline{AC} = 7$, and $\overline{BC} = 8$. Find the length of the	
Altitude of side AC.	8
9. Find all ordered pairs (x, y) satisfying both of the equations	
X ² -2x -y =1	
5x -y =13	9
10. Solve for x in terms of y:	
$y = \frac{2x-5}{x+3}$	10

(Over)

temperature T is a linear function of time t. If the initial	
temperature is 80° and the temperature after 20 minutes	
is 90°, find a general expression for the temperature T(t)	
after t minutes.	11. <u>T(t)=</u>
12. In quadrilateral ABCD, $AB \perp BC$ and $DC \perp BC$.	
$\overline{AB} = 4, \overline{DC} = 3, and \overline{BC} = 2.$	
Find the area of the quadrilateral.	12
13. Find all x in the interval [0, 2 π] satisfying sin ² x -3cos ² x = 0.	13
14. Suppose an ellipse is centered at (2, 3) and the ends of the	
axes are the points (2, -1), (0, 3), (2,7), and (4,3). Give an	
equation of the ellipse.	14
15. Find all x such that $2x^3 - 7x^2 + 2x + 3 + 0$.	15
16. A rectangular box has square bases with side of length x	
and a volume of 100 cu. in. Express the total surface area A	
of the box (including bases) as a function of x.	16. <u>A(x)=sq.in.</u>
17. Find all x such that $\frac{x-1}{x} < 4$.	17
18. Two trains leave the same city at the same time traveling	
constant speeds. One train going north, travels 20 mph faster	
than the other, which is going east. If they are 300 miles apart	
after 5 hours, what is the speed of the northbound train in mph	
to the nearest multiple of 10?	18
19. If the line y=mx +1 intercepts the ellipse $x^2 + 4y^2 = 1$ exactly once,	
what is the value of m ² ?	19. <u>m²=</u>
20. Given that AB, EF, and CD are perpendicular to BD and that	
$\overline{AB} = 10, \overline{BD} = 30, \text{ and } \overline{CD} = 20, \text{ find } \overline{EF}.$	20
A	

11. A chemical solution is heated in such a way that the

F

1985 Senior Examination

(Section II)

NAME:	SCHOOL:
1. Find all x such that $\left \frac{x+2}{x+6}\right = 3$	1
 Find the coordinates of the vertex of the parabola X=2y²-8y+9 	2.
X=2y -0y+3	Z
3.A track is in the shape of a rectangle with semicircles at	
Two opposite sides. If the perimeter of the track is 400	
Meters, express the total area A of the figure as a function	
of r, the radius of the semicircles.	3
4.Find all x in the interval $[0,2\pi]$ satisfying 2 cos 2x=1.	4
5. Find all x such that $\sqrt{x-3} + \sqrt{x+5} = 4$.	5
6.Determine x such that 8 ^{x+2} =4 ^{3x-1}	6
7. What is the domain of the function f(x) = x log (-x + 3) – 10	? 7
8. A square and a circle have equal perimeters. Find the	
ratio of the area of the circle to the area of the square.	8
9.Find x if the point (x, -4) lies on the line which passes	
through the points (0, 8) and (-4, 0).	9
10. Which of the following is the best approximation of	
$\frac{\pi^2}{\cos 1}$. (a) 100 (b) 10 (c) 20 (d) 0	10
	(OVER)

11. Suppose f (x)= $\frac{2}{x+1}$ and h≠0. Determine $\frac{f(x+h)-f(x)}{h}$ and simplify.	11	
12. Find the radius of the circle circumscribed about ΔABC if $\overline{AB} = 5$,		
$\overline{AC} = 5$, and $\overline{BC} = 9$.	12	
13.Suppose $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ and sin θ =a. Express sin 20 in terms of a.	13	
14. Which is smallest?		
(a) $3 + \sqrt[3]{25}$ (b) $\sqrt[3]{200}$		
(c) $2 + \sqrt{17}$ (d) 2π	14	
15. If x = log_8 225 and y = log_2 15, find x in terms of y.	15	
16. A square has sides of length s. A circle has area twice the		
area of the square. Express the radius of the circle in terms of s.	16. r =	
17. Find the center and radius of the circle which		
passes through the points (5, 3), (-2, -4), and (2, -6).	17. center	
	radius	
18. Find the radius of the inscribed circle of ΔABC		
if $\overline{AB} = 6$, $\overline{BC} = 7$ and $\overline{CA} = 5$.	18	

19. Points A, B, C, D and E are on a circle as shown. The measure of arc \widehat{BC} is 42° and the measure of arc \widehat{CD} is 38°. Find the sum of the

measures of angles P and C.

 $P \xrightarrow{A}_{E} D$ $B \xrightarrow{B}_{C} 19.$

20. Towns A and B are connected by a highway. A truck leaves town A headed for town B at a constant speed. At the same moment a car leaves town B headed for town A at a constant speed. After they pass each other at a point between A and B, it takes the truck $2\frac{1}{4}$ hours to complete its trip and it takes the car 1 hour to complete its trip. What is the total time (in hours) of the truck's trip? 20._____