LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - - 1991 Junior Examination
(Section 1)

NAME:
SCHOOL:
Directions: For each problem, write your answer in the space provided.
Do not use approximations. Simplify all fractions and radicals.
Your answer must be complete to receive credit for a problem.

1. Find all real x for which: $3 \mathrm{x}^{2}+13 \mathrm{x}+4=0$
2. \qquad
3. Find all coordinates of the point P , given that the point $(2,-1)$ bisects the line segment joining P and the point $(4,3)$.
4. Find the area of the region in the xy plane which satisfies both of the following inequalities:

$$
\begin{aligned}
& x^{2}+y^{2}+6 x-2 y \geq-9 \\
& x^{2}+y^{2}+6 x-2 y \leq-1
\end{aligned}
$$

3. \qquad
4. Find all real x for which $\left(\mathrm{x}^{2}-4\right) \mathrm{b}^{\mathrm{x}}<0$ if $\mathrm{b}>1$.
5. Express as a rational number, the repeating decimal
76.63424242
6. Find k if $\mathrm{x}-1$ is a factor of $\mathrm{k}^{2} \mathrm{x}^{4}-2 \mathrm{kx}^{2}+1$.
7. Find the area of right triangle DEC shown below if $\overline{\mathrm{DC}}=2, \overline{\mathrm{AC}}=3$, and $\overline{\mathrm{AB}}=10$.

8. In how many ways can the letters of the word "spectrum" be arranges so that the " r " and the " t " are always next to each other?
9. Find $\cos \frac{21 \pi}{4}$.
10. \qquad
11. Find all real x for which:
12. \qquad

$$
\frac{2}{x+3} \geq \frac{1}{x-1}
$$

11. Find the point(s) of intersection of the parabola $4 y^{2}+4 y-5 x+12=0$ and the line $x=9$.
12. \qquad
13. If the curve shown is part of a parabola, with vertex V , find the distance from P to Q .

14. A function f, f, is called "even" if $f(x)=f(-x)$ for all x in its domain, or "odd" if $f(-x)=-f(x)$ for all x in its domain. If g is even, and h is odd and never zero, and both are defined for all reals, list all of the following that are odd:
(a) $g(x) h(x)$
(c) $[\mathrm{h}(\mathrm{x})]^{2}$
(e) $\mathrm{h}(\mathrm{h}(\mathrm{x}))$
(b) $\frac{g(x)}{h(x)}$
(d) $g(x)+h(x)$
(f) $h(x)+h(-x)$
15.
16. Solve for $\mathrm{x}: \mathrm{x}^{\frac{2}{3}}-3 \mathrm{x}^{\frac{1}{3}}=-2$
17.
18. \qquad
19. The perimeter of rectangle is 42 inches and the area is 108 sq. inches. Find the dimensions of the rectangle.
20. \qquad
21. Find two consecutive positives integers whose product is 272 .
22. List all of the statements (a) - (e) that are FALSE about the function f , whose graph is shown.

a) f has 5 roots
b) $f(0)-f(2)>0$
c) $f(3)-3>0$
d) $(f \circ f)(0)=2$
e) $f(x)$ is positive for all x in the interval $(1,3]$
23. If $\log \mathrm{x}=\log _{10} \mathrm{x}$, solve for $\mathrm{x}: \log (\mathrm{x}+2)-\log \mathrm{x}=1$.
24. \qquad
25. Three people play a game. At the end of each game, the one loser must double the money of each of the other two players. After three games, each has lost once, and each ends up with $\$ 24$. With how much did each person
26. start?
\qquad SCHOOL: \qquad
27. Find all real x for which: $1-\frac{3}{\mathrm{x}}=\frac{40}{\mathrm{x}^{2}}$
28. \qquad
29. Find the slope and y-intercept of the line whose equation is $3(x-2)+y=7-6(y+4)$
30. Find $\log _{1 / 2} 8$.
31. Find all real values of t for which the following function is defined:

$$
f(t)=\sqrt{9-(t-9)^{2}}
$$

4. \qquad
5. \qquad
6. Find all real x for which: $\sqrt{x+3}=2+\sqrt{x-5}$
7. Find the center and radius of the circle that passes through the points $(0,5),(2,5)$ and $(2,-1)$
8. center \qquad radius \qquad
9. In the right triangle ABC shown, find the length of $\overline{\mathrm{AC}}$ if $\overline{\mathrm{AD}}=9$ and $\overline{\mathrm{BD}}=15$.

10. \qquad
11. \qquad $12 x-5 y=7$
12. A person has 8 shirts and 6 pairs of pants. How many different shirt-pants combinations can the person wear?
13. List all of the following expressions that are factors of $x^{3}+4 x^{2}+x-6$:
a) $x-1$
b) $x^{2}+3 x+6$
c) $x-2$
d) $\mathrm{x}+3$
e) $x^{2}+2 x-3$
14. \qquad
15.
16. A belt just fits around three wheels with equations
$(x+10)^{2}+y^{2}=1,(x-10)^{2}+y^{2}=1$,
and $x^{2}+(y-10 \sqrt{3})^{2}=1$.
Find the length of the belt.
17. \qquad
18. A regular hexagon (6 equal sides) is inscribed in a circle of radius 4 . Find the area of this hexagon.
19. If $0 \leq t \leq 2 \pi, \sin t=5 / 13$ and $\cos t=-12 / 13$, find $\cot t$.
20. In the diagram of the stairs drawn to the right,
if all the steps are congruent, how deep is each step? (That is, find d.)

21. Find a formula for $f(x)$ if f is a rational function whose graph passes through the point $(2,5)$ and has only the asymptotes $y=2 x+3$ and $x=3$
22. A three-digit number equals 19 times the sum of its digits. If the digits are reversed, the resulting number is greater than the given number by 297 . The tens digit exceeds the units digit by 3 . Find the given number.
23. Determine the formula for $f(x)$, if for all real Numbers a and $b: f(a) f(b)-f(a b)=a+b$.
24. If $\mathrm{b}>1$ is any real number, find all values of x for which
$\left(\log _{b} x\right)^{2}+10<7 \log _{b} x$. (Your answer will be in terms of b.)
25. \qquad
26. Find the maximum and minimum values of the expression $\cos \mathrm{t}+\sin \mathrm{t}$ when $0 \leq \mathrm{t}<2 \pi$.
27. \qquad
28. Find two points on the graph of $y=3 x$ where the distance to the origin is 2 .
29. \qquad

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - - 1991 Senior Examination
(Section 1)

NAME:
SCHOOL:
Directions: For each problem, write your answer in the space provided.
Do not use approximations. Simplify all fractions and radicals.
Your answer must be complete to receive credit for a problem.

1. Find all real x for which: $x^{2}+16 x-3=0$
2. \qquad
3. Find $\mathrm{A}, \mathrm{B}, \mathrm{C}$, so that

$$
\frac{6 x^{2}-21 x+13}{\left(x^{2}+4\right)(x-5)}=\frac{A x+B}{x^{2}+4}+\frac{C}{x-5}
$$

2. $\mathrm{A}=$ \qquad
$\mathrm{B}=$ \qquad
$\mathrm{C}=$ \qquad
3. Assuming y is a differentiable function of x, find the derivative $\frac{d x}{d y}: x^{2} y+5 x=y^{5}-3$
4. Find all real x for which the following statement is true: $|\mathrm{x}| \leq \mathrm{x}$
5. Find all real x for which: $\sqrt{x+3}=2+\sqrt{x-5}$
6. Find the shaded area of the polar rectangle shown. The two curves
 are arcs of concentric circles with center C.
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. Determine the larges and smallest values of
$f(x)=3 x^{4}+4 x^{3}-12 x^{2}+1$ on the interval $[-1,1]$.
12. largest \qquad smallest \qquad
13. List each of the following functions which is its own inverse:
a) $f(x)=x$
b) $g(x)=x+5$
c) $h(x)=-x+5$
d) $k(x)=\frac{1}{x}$
e) $r(x)=7 x$
14. \qquad
15. \qquad when $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}$ and $\mathrm{g}(\mathrm{x})=\frac{1}{\mathrm{x}-1}$.
16. \qquad
17. If $f(x)=x^{2}-x+1$, what is the slope of the line joining the points $(1, f(1))$ and $(2, f(2))$?
18. Find k so that $\mathrm{g}(\mathrm{x})=9 \mathrm{x}^{2}-30 \mathrm{x}+\mathrm{k}$ has exactly one real root.
19. \qquad
20. If the curve shown is part of a parabola, with vertex V, find the distance from P to Q .
21. \qquad

22. A function f, f, is called "even" if $f(x)=f(-x)$ for all x in its domain, or "odd" if $f(x)=-f(x)$ for all x in its domain. If g is even, and h is odd and never zero, both defined for all reals, and $\mathrm{h}(\mathrm{x})$ is never zero, list all of the following that are odd:
(a) $g(x) h(x)$
(c) $[\mathrm{h}(\mathrm{x})]^{2}$
(e) $\mathrm{h}(\mathrm{h}(\mathrm{x}))$
(b) $\frac{g(x)}{h(x)}$
(d) $g(x)+h(x)$
(f) $h(x)+h(-x)$
23. Solve for $\mathrm{x}: 5^{\mathrm{x}^{2}-\mathrm{x}}=25$
24.
25. \qquad
26. \qquad

$$
f(x)=\left\{\begin{array}{cl}
-2 x & \text { if } x<-1 \\
x^{2}-3 & \text { if }-1 \leq x<3 \\
6 x-12 & \text { if } x \geq 3
\end{array}\right.
$$

16. If $\log _{b} N=5$, find $\log _{1 / b} N$.
17. \qquad
18. In how many ways can the letters of the word "spectrum" be arranges so
19. \qquad that the " r " and the " t " are always next to each other?
20. Find the perimeter of the polygon drawn:
21. \qquad

22. Find: $\sin 1^{\circ}+\sin 2^{\circ}+\sin 3^{\circ}+\cdots+\sin 359^{\circ}$
23. \qquad
24. Three people play a game. At the end of each game, the one loser must double the money of each of the other two players. After three games, each has lost once, and each ends up with $\$ 24$. With how much did each person start?
\qquad SCHOOL: \qquad
25. If $g(x)=4 x$, list all of the following that are true for all real x :
a) $g\left(x^{2}\right)=(g(x))^{2}$
b) $g(|x|)=|g(x)|$
c) $g(-x)=g(x)$
d) $g(3 x)=3 g(x)$
26. \qquad
27. \qquad
28. If $b>1$ is any real number, find all values of x for which $\left(\log _{b} x\right)^{2}+10<7 \log _{b} x$. (Your answer will be in terms of b.)
29. Determine a and b so that the following function is everywhere continuous:

$$
f(x)=\left\{\begin{array}{ccc}
1-x & \text { if } & x<0 \\
a x+b & \text { if } & 0 \leq x<3 \\
2 & \text { if } & x \geq 3
\end{array}\right.
$$

3. \qquad
4. A number is called "perfect" if it is the sum of all its positive integral divisors except itself. The number 6 is perfect. Another perfect number is:
a) 36
b) 24
c) 16
d) 28
e) 12
5. \qquad
6. Determine the formula for $f(x)$, if for all real numbers a and $b: f(a) f(b)-f(a b)=a+b$.
7. Find the center and radius of the circle that passes through the points $(0,5),(2,5)$ and $(2,-1)$
8. If θ is a fourth quadrant angle whose terminal side coincides with the line $3 x+4 y=0$, find $\sin \theta$.
9. Find the distance between the parallel lines
$12 x-5 y=2$ and $12 x-5 y=7$.
10. Find all real values of x for which $\left|x^{2}-5 x-5\right|>9$.
11. If the sum of an infinite geometric series if $S=\frac{a}{1-r}$, where a if the first term of the series and r is the common ration between successive terms, find the sum of the series:

$$
2+\frac{4}{3}+\frac{8}{9}+\frac{16}{27}+\cdots
$$

9. \qquad
10. \qquad
11. In the diagram of the stairs drawn to the right, if all the steps are congruent, how deep is each step? (That is, find d.)

12. \qquad m
13.
14. \qquad
15.
16. \qquad to the parametric equations: $x=3-2 t, y=4+3 t$.
17. A three-digit number equals 19 times the sum of its digits. If the digits are reversed, the resulting number is greater than the given number by 297 . The tens digit exceeds the units digit by 3 . Find the given number.
18. A belt just fits around three wheels with equations
$(x+10)^{2}+y^{2}=1,(x-10)^{2}+y^{2}=1$, and $x^{2}+(y-10 \sqrt{3})^{2}=1$. Find the length of the belt.
19. Write in simplest form: $\frac{\sec \theta \csc \theta}{\tan \theta+\cot \theta}$
20. Find the largest possible domain for $f(x)=\frac{\ln (x+2)}{x-4}$
21. \qquad
\qquad
