LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - - 1992 Junior Examination
(Section I)

NAME: \qquad

SCHOOL:

Address: \qquad
Tel. no.: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1. One number is twice another. The sum of their reciprocals
is 2 . Find the numbers.
2. Suppose that b is inversely proportional to the square of a, and that $\mathrm{b}=18$ when $\mathrm{a}=3$. Find b when a is 9 .
3. Determine t so that the line through $(-1,1)$ and $(3,2)$ is parallel to the line through $(0,6)$ and $(-8, t)$.
4. The given circle is centered at P , and $\overline{P B} \perp \overline{A C}$.
If $\mathrm{AC}=56$ and $\mathrm{AP}=35$, find PB .

5. Solve for $\mathrm{x}: \frac{1}{x-1}+\frac{1}{x+1}=\frac{3 x}{x^{2}-1}$
6. Determine all values of θ in the interval $[0,2 \pi]$ which satisfy $\cos \theta=-\frac{1}{2}$ and $\csc \theta=\frac{2}{\sqrt{3}}$.
7. \qquad
8. Evaluate the following limit: $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}$
9. \qquad
10. An executive committee consists of four women and six men. Three members will be selected at random to attend a conference in Hawaii. What is the probability that three women will be selected?
11. \qquad
12. A triangle has vertices $(1,0),(5,0)$, and $(3,5)$. What is the area of the triangle?
13. Determine b so that $\log _{b} 8=\frac{3}{4}$.
14. \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. By comparing the graphs below, determine the values of the constants a, b, and c. (Each tick mark represents one unit.)

20. Suppose $\mathrm{f}(\mathrm{x})=\frac{2 x^{2}-5 x-3}{x^{2}-3 x}$. Give the equations of the vertical and horizontal asymptotes of the graph of f.
21. Find all values of x which satisfy $x^{2}+\mathrm{x}<2$.
22. What is the value of b in the given diagram?

23. Suppose Holly drove 90 miles at an average speed of 30 mph . What average speed would be necessary for her return trip in order to achieve an average speed of 50 mph for her entire trip?
24. Suppose $\mathrm{f}(\mathrm{x})=2 x^{2}-\mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=5 \mathrm{x}+3$. Find $f(g(x))$ and simplify.
25. Determine x such that $\frac{1}{4^{x-2}}=64$.
26. A man invests $\$ 2200$ in 3 accounts that pay $6 \%, 8 \%$, and 9%, in annual interest, respectively. He has three times as much invested at 9% as he does at 6%. If his total interest for one year is $\$ 178$, how much money is invested at each rate?
27. A woman bought some plates; $2 / 3$ of them were cracked, $1 / 2$ of them were chipped, and $1 / 4$ were both chipped and cracked. Only 2 of the plates were neither chipped nor cracked. How many plates did she buy?
28. If $\mathrm{r}>0$ and $\left(r+r^{-1}\right)^{2}=5$, find the value of $r^{3}+r^{-3}$.
29. \qquad
30. \qquad
31. \qquad
32. \qquad mph
33. \qquad
34. \qquad
35. \$ \qquad (6\%)
\$
\$

36. \qquad
37. \qquad

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - - 1992 Junior Examination
(Section I)

NAME: \qquad

SCHOOL:

\qquad
Address: \qquad
Tel. no.: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1. Determine the slope of the line with equation $5 x+6 y=3$.
2. Suppose that b is directly proportional to a , and that b is 10 when a is 2 . Find b when a is 6 .
3. A light-year is approximately 5.9×10^{12} miles. If a certain galaxy is 1.7×10^{6} light-year from our galaxy, find the distance in miles between the two galaxies.
4. Find the x-intercepts of the graph of the function $f(x)=4 x^{2}+4 x-3$.
5. Suppose a certain triangle is isosceles, with base 10 and perimeter 36 . What is the area of the triangle?
6. Solve for $\mathrm{a}:\left|\frac{3}{5} a+\frac{1}{2}\right|=1$.
7. Determine all values of x in the interval $[-2 \pi, 0]$ which satisfy $\tan x=\sqrt{3}$.

8. If $\log \mathrm{a}=\mathrm{x}$ and $\log \mathrm{b}=\mathrm{y}$, express $\log \frac{a^{2}}{b}$ in terms of x and y .
9. A boat traveling at a constant speed takes 2 hours to travel 24 miles downstream and 3 hours to travel to travel 18 miles upstream. What is the speed of the river current?
10. \qquad
11. \qquad
12. \qquad mi
13. \qquad
14. \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. \qquad $\mathrm{mi} / \mathrm{hr}$
20. Determine the length of a chord that is a distance 5 from
21. \qquad the center of a circle with radius 8 . \qquad
22. A motorcycle is traveling on a curve along a highway. The curve is an arc of a circle with radius $1 / 4$ mile. If the
23. \qquad motorcycle's speed is 42 miles per hour, what is the angle \qquad (in radians) through which the motorcycle will turn in $1 / 2$ minute?
24. The odd is favor of a certain team winning the World Series
25. \qquad are $7: 2$. Wat is the probability that this team will win the World Series?
26. Suppose a circle has center $(-4,1)$ and a diameter with $(2,6)$ as one endpoint. Find the coordinates of the other endpoint of the diameter.
27. \qquad
28. By comparing the graph below, determine the values of the constants a and b. (Assume that each tick mark
29. $\mathrm{a}=$ \qquad
$\mathrm{b}=$ \qquad
represents one unit.)

30. Suppose a line l contains a diameter of a circle $2 x^{2}-3 x+2 y^{2}+5 y-2=0$. If that diameter passes through the point $(2,0)$, find the slope-intercept form of the equation of l.
31. \qquad
32. Determine x such that $\left(\frac{9}{25}\right)^{x}=\frac{5}{3}$.
33. Find the area of a regular 6-pointed star inscribed in a circle of radius 1.

34. \qquad
35. \qquad
36. Suppose the trigonometric point $\mathrm{P}(\mathrm{t})$ on the unit circle has coordinate $\left(-\frac{3}{5}, \frac{4}{5}\right)$. Find the coordinates of $\mathrm{P}(2 \mathrm{t})$.
37. \qquad
38. If $\mathrm{r}>0$ and $\left(r+r^{-1}\right)^{2}=5$, find the value of $r^{3}+r^{-3}$.
39. \qquad
\qquad
\qquad
40. A rectangle is 2 cm longer than it is wide. The diagonal of the rectangle is 10 cm long. Find the perimeter of the rectangle.
41. \qquad cm
42. Find the equation of the circle with the center at the origin and y-intercepts 3 and -3 .
43. Determine all values of x which satisfy $1-2 x<5$.
44. Determine the period of the function

$$
f(x)=2 \sin (6 x-\pi)
$$

4.
5. \qquad
6. If $\mathrm{f}(\mathrm{x})=\frac{2 x-1}{x+3}$, find $\mathrm{f}\left(\frac{1}{t}\right)$ and simplify.
7. \qquad
8. Solve for $\mathrm{x}: \log _{10}(x-2)=2$.
9. \qquad
10. In the given triangle, $\mathrm{m} \angle \mathrm{ADB}=\mathrm{m} \angle \mathrm{BDC}$.

If $\mathrm{AD}=21, \mathrm{DC}=14$, and $\mathrm{AC}=25$, what is AB ?

7. \qquad
8. \qquad
Determine the value of $(2 * 3) * 4$.
9. \qquad gal (20\%) 9 gallons of 30% alcohol solution?
$\xrightarrow{\text { ga }}$
gal (50\%)
10. Suppose a quadrilateral ABCD is inscribed in a circle, with $m \angle A=x, m \angle B=2 x$, and $m \angle C=x+20$, all in degree measure. Find x and $m \angle D$.
10. $\mathrm{x}=$ \qquad
$\mathrm{m} \angle \mathrm{D}=$ \qquad
11. A woman has 23 coins with a total value of $\$ 1.90$. If the coins consist only of dimes and nickels, how many of each type does she have?
12. At the moment when the angle of elevation of the sun is 60°, a building's horizontal shadow is 50 meters long. How tall is the building?
13. A company has determined that can sell x videotapes per day at the price of p dollars per tape, where $x+20 p=230$. Express the revenue R as a function of p.
14. A teacher has 5 books, she wishes to arrange 3 of them on a shelf. In how many different ways can this be done?
15. If $\sin x=\frac{1}{5}$ and $\frac{\pi}{2}<x<\pi$, determine $\cos x$.
16. Among 200 students at a certain school, 85 take physics, 95 take chemistry, and 50 take both physics and chemistry. How many students take neither physics nor chemistry?
17. Suppose a transformation of the plane maps each point (x, y) to the point ($5 x-3,2 y+7$). Determine which point is mapped to the point $(2,3)$.
18. Solve for x in terms of $\mathrm{y}: \frac{2 x}{x+3}=\mathrm{y}$
19. Find all values of x in the interval $[0,2 \pi]$ which satisfy $\sqrt{2} \sin x-1=0$.
20. Determine the area of the region between the graphs of $x^{2}+y^{2}=1$ and $|x|+|y|=1$.
11. \qquad dimes
\qquad
12. \qquad m
13. $R(p)=$ \qquad
14. \qquad
15. \qquad
16. \qquad
17. \qquad
18. \qquad
19. \qquad
20. \qquad

1992 JUNIOR EXAMINATION
 (SECTION II)

NAME: \qquad SCHOOL: \qquad

1. A circle has center $(2,5)$ and passes through the point $(-1,4)$. What is the radius of the circle?
2. Determine a and b so that $x^{2}-10 \mathrm{x}+23=(x-a)^{2}+\mathrm{b}$.
3. $\mathrm{a}=$ \qquad $\mathrm{b}=$ \qquad
4. Find all values of x which satisfy $|3 x-5|=7$.
5. Determine the coordinates of the intersection point of the graphs of $\mathrm{y}=1-x^{2}$ and $\mathrm{y}=2 \mathrm{x}+2$.
6.
7. \qquad
8. What is the coefficient of $x^{4} y^{6}$ in the expansion of $\left(x+y^{2}\right)^{7}$?
9. \qquad

10. \qquad
11. \qquad
(a) * is associate but not commutative
(b) * is commutative but not associative
(c) $*$ is both associative and commutative
(d) * is neither associative nor commutative
12. Determine the period of the function $f(x)=2 \sin (6 x-\pi)$.
13. A company has determined that it can sell x videotapes per day at the price of p dollars per tape, where $x+20 p=230$. Express the revenue R as a function of p .
14. Suppose f is defined by $\mathrm{f}(\mathrm{x})=\frac{3 x-1}{2 x+5}$. Give a formula for the inverse function f^{-1}.
15. \qquad
\qquad

-

8. \qquad
9. $\mathrm{R}(\mathrm{p})=$ \qquad
10. \qquad
11. Determine a so that the following function g is continuous at 2 :

$$
\mathrm{g}(\mathrm{x})= \begin{cases}x^{2} & \text { if } x<2 \\ a x+6 & \text { if } x \geq 2\end{cases}
$$

11. \qquad
12. In the given figure, $\overline{A D}$ is tangent to the circle centered at P, and $\overline{A C}$ is a secant. If $\mathrm{m} \widehat{B D}=30^{\circ}$, $\mathrm{m} \widehat{D C}=140^{\circ}$, find $\mathrm{m} \angle \mathrm{BAD}$.

13. \qquad
14. Suppose a transformation of the plane maps a point (x, y) to the point ($2 \mathrm{x}+\mathrm{y}, \mathrm{x}-3 \mathrm{y}$).
Determine which point is mapped to the point $(1,2)$.
15. \qquad
16. Eric has 3 math books and 2 science books; he wishes to arrange all of them on a shelf. How many arrangements are possible if books of the same type must be grouped together?
17.
18. A bag contains 5 red and 3 green marbles. Two marbles are selected at random, without replacement. What is the probability that the first marble is red and the second is green?
19. \qquad
20. In the given figure, determine x so that the path ACB has minimum length.

21. \qquad
22. Find all values of x in the interval $[0,2 \pi]$ which satisfy $\sqrt{2} \sin x-1=0$.
23. \qquad
24. Solve for $\mathrm{x}: \log _{49} x=-\frac{1}{2}$.
25. \qquad
26. Determine the value of the following sum:
$\sin ^{2} 1^{\circ}+\sin ^{2} 2^{\circ}+\ldots+\sin ^{2} 88^{\circ}+\sin ^{2} 89^{\circ}$
27. \qquad
28. Find the area of the region between the graphs of $x^{2}+y^{2}=1$ and $|x|+|y|=1$.
29. \qquad
