Luzerne County Council of Teachers of Mathematics

Wilkes University - 2001 Senior Examination

(Section I)

Name: \qquad Address: \qquad
School: \qquad City/ZIP: \qquad
Telephone: \qquad
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.
1.) Find the equation of the line in slope-intercept form, that is perpendicular to the line with the equation $y=-\frac{1}{3} x+\frac{18}{11}$ that passes through the point $(2,7)$.
1)
2) The angles of a pentagon are in arithmetic progression.

One of these angles, in radians, must be
A) $\frac{\pi}{2}$
B) $\frac{3 \pi}{5}$
C) $\frac{2 \pi}{5}$
D) $\frac{3 \pi}{10}$
E) none of the above
2)
$3)$ Find the equation of the parabola with vertex $(2,-4)$ and the line $x=2$ as its axis of symmetry that passes through the point (3, -1).
3)
4) Given $f(x)=3 x^{4}+2$ and assuming $h \neq 0$, evaluate the expression $[f(x+h)-f(x)] / h$
4)
5) Convert the repeating decimal $0 . \overline{281}=0.281281 \ldots$ into a fraction expressed in lowest terms.
5)
6) A 300 -seat theater charges $\$ 6$ per adult ticket and $\$ 3$ per child ticket. If $2 / 3$ of the seats were filled and the ticket sales totaled $\$ 921$, how many adults were in the audience?
6)
7) Suppose $f(x)=\frac{x^{2}}{x-1}$ and $g(x)=\sqrt{x-5}$. What is the domain of $(f \circ g)(x)$?

> 7)
8) Find the value of $\cos \left(2 \operatorname{Arctan} \frac{1}{5}\right)$.
8) \qquad
9) List all roots of multiplicity 2 for the polynomial

$$
p(x)=x^{4}-2 x^{3}+x^{2}
$$

9) \qquad
10)
11) A particle projected vertically upward reaches and elevation of $h(t)=160 t-16 t^{2}$ feet at the end of t seconds. What is
the maximum height the particle can reach?
12) How many real values of x satisfy the following equation?
13) What is the minimum circumference of a circular pan needed to hold 4 slices of french toast, each 4.25 inches by 4.25 inches, with 0.5 inches between them?

14) feet
15) \qquad
16) \qquad inches
17) Assume that x is a real number such that $\cos x \neq 0$. the quantity $3 \sin ^{2} x+2 \sec ^{2} x+3 \cos ^{2} x-2 \tan ^{2} x$ is equal to
A) 5
B) $4+\cos ^{2} x+\sin ^{2} x$
C) $4+\csc ^{2} x-\cot ^{2} x$
D) both A) and B) \quad E) both A) and C)
E) all of the above
18)
19) Evaluate the limit $\lim _{x \rightarrow-\infty} \frac{9+5 x}{\sqrt{4 x+7 x^{2}-3}}$.
20)
21) Completely factor the expression $x^{3}-7 x^{2}+14 x-8$.
22)
23) Find a number k such that $x+4$ is a factor of

$$
x^{3}+k x^{2}+11 x+2 k
$$

16)
17) Find the constant term in the expansion of $\left(y+\frac{1}{2 y}\right)^{8}$
18)

18)What is the degree measure of each interior angle of a regular octagon?
18) \qquad degrees
19) Find all the real numbers x satisfying the inequality

$$
x^{3} \leq 3 x-2 x^{2}
$$

19) \qquad
20) A sphere is inscribed within a closed right circular cylinder whose height is twice its diameter. Express the surface area of the cylinder to that of the sphere as a fraction.

21)

Luzerne County Council of Teachers of Mathematics

Wilkes University - 2001 Senior Examination
(Section II)
Name: \qquad Address: \qquad
School: \qquad City/ZIP: \qquad
Telephone:
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) A metal strip has a density of $250 \mathrm{gm} / \mathrm{cm}$. Express the density in kg / m.
2) \qquad kg/m
3) If a circular cake with a diameter of 8 in. costs $\$ 6$, what is a fair price for a circular cake with a diameter of 12 in.?
4)
5) If $f(x)=3 x^{2}+x-5$ and $h \neq 0$, evaluate the expression

$$
\frac{f(x+h)-f(x)}{h}
$$

3) \qquad
4) Determine all real numbers a such that $f(x)=x^{3}-x^{2}+a x-a$ has only real roots.
5) \qquad
6) What is the probability of rolling a sum of 9 on a pair of fair, six-sided dice?
7)
8)
9) What is the units digit of 2137^{753}
10) The arithmetic mean of a set of 20 numbers is 80 . If two members of the set, namely 52 and 72 , are discarded, what is the arithmetic mean of the remaining set of numbers?
11)
12) Find the exact value of $\sin \frac{7 \pi}{12}$.
13) \qquad
14) What is the period of $f(x)=4 \cos \left(-2 x+\frac{\pi}{4}\right)$?
15)
16) A 20 ft by 80 ft rectangular swimming pool is constructed so that its maximum depth is 3 times its minimum depth D . Write and expression for the volume of the pool the terms of its depth D.
17) \qquad ft^{3}
18) Find all values of x such that the distance between $(-7,3)$ and $(x, 5)$ is 6.
19) Determine the domain of the function $\frac{\sqrt{\frac{x+1}{x-5}}}{x+2}$
20)
21) Evaluate the $\lim _{x \rightarrow 0} \frac{x^{3}-x}{x^{2}+x}$.
22)
23) Find the vertex and axis of symmetry for the parabola that satisfies the equation $y=3 x^{2}-6 x+22$.
24) \qquad
25) Solve the following inequality:

$$
|x+2|>|x-4|
$$

15) \qquad
16) Suppose $f(x)=x^{2}+2$. Find and completely expand $(f \circ f \circ f)(x)$.
17) \qquad
18) Find all real numbers x satisfying the equation

$$
\ln (2 x-3)-\ln (x+4)=\frac{1}{2}
$$

17)
18) In how many ways can a baker sell eight identical apple pies to four different customers so each customer gets at least one pie?
19) \qquad
20) What is the volume of a right circular cone with height 5 in . and base radius 4 in.?
21) \qquad in 3
22) In the following figure, assume A, B, and C are equilateral triangles. A has an area of $9 \sqrt{3}$ square units and B has an area of $16 \sqrt{3}$ units. Find the area of C.

23) sq. units

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2001 Junior Examination

(Section I)

Name: \qquad Address: \qquad
School: \qquad City/ZIP: \qquad
Telephone: \qquad
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Find the circumference of a circle with diameter 8 units.
2) units
3) Find the equation of the line in slope-intercept form that
passes through the points $(1,3)$ and $(-6,8)$.
4) How many distinct 6-letter strings (words) can be generated from the word ALASKA?
5)
6) \qquad
\qquad
7) Find the total surface area of the following square pyramid.

8) \qquad sq. units
9) If $\ln x=A$ and $\ln y=B$, then write the following as a single term involving A and B.
10) \qquad
11) Given a equilateral triangle with sides of length L, express the ratio of the area of the triangle to its perimeter in terms of L.
12)
13) The graph of $x^{2}-9 y^{2}=0$ is
A) a parabola
B) an ellipse
C) a point
D) two distinct straight lines
E) none of the above
14) \qquad
15) Find the center and radius of the circle that satisfies the equation $x^{2}+y^{2}-6 x+12 y-55=0$
16) center: \qquad
radius: \qquad units
17) Solve for $a: \quad \sqrt{8+a}=\sqrt{4+a}+2$
18) $\mathrm{a}=$ \qquad
19) Find all real numbers x and y that satisfy the following equations simultaneously:

$$
\frac{27^{x+y}}{3^{2 y}}=9, \quad \frac{8^{x+y}}{16^{x}}=64
$$

$$
x=
$$

\qquad

$$
y=
$$

\qquad
11) What is the probability of rolling a regular six-sided die exactly 3 times without rolling a " 4 " before rolling a " 4 " on the fourth roll?
12) The radius of a sphere is 3 inches. What change in the
radius will increase the volume by 207π in 3 ?
12)

[^0]\qquad
13) Find the equation of the tangent line in slope- intercept form to the circle $(x+2)^{2}+(y-1)^{2}=20$ through $(-4,5)$.
14) What is sum of the numeric coefficients in the complete expansion of $\left(x^{2}-2 x y+y^{2}\right)^{7} ?$
15) Express the complex number $-\sqrt{3}-i$ in the form
$r(\cos \theta+i \sin \theta)$, where $r>0$ and $0 \leq \theta \leq 2 \pi$.
15)
16) In the figure below, C is the center of both circles $C B=7$ units and $A B=9$ units. Find the area of the shaded region.

16) sq. units
17) Rationalize the denominator and simplify:
$$
\frac{5}{\sqrt[3]{23}}
$$
17)
18) If $x>0, y>0$, express the following in the form $\frac{x^{a}}{y^{b}}$, where $a, b \geq 0$.
$$
\frac{\left(\sqrt[5]{x^{-12} y^{\frac{18}{7}}}\right)^{-5 / 6}}{\sqrt[4]{y^{3}}}
$$
18)
19) List all roots of multiplicity 2 for the polynomial
$$
p(x)=x^{3}-5 x^{2}+8 x-4
$$
20) A merchant has 6 pounds of mixed nuts that cost $\$ 15$.

He wants to add peanuts that cost $\$ 1.50$ per pound and cashews that cost $\$ 5$ per pound to obtain 40 pounds of a mixture the costs $\$ 3.50$ per pound. How many pounds of peanuts and cashews are needed?
20) pounds

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2001 Junior Examination
(Section II)
Name: \qquad Address: \qquad
School: \qquad City/ZIP: \qquad
Telephone: \qquad
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) If a circular cake with a diameter of 8 in. costs $\$ 6$, what is a fair price for a circular cake with diameter 12 in.?
2)
3) What is the probability of rolling a sum of 6 on a pair of fair, six-sided dice?
4)
5) Write as a single fraction:

$$
\frac{\frac{2}{3}+\frac{5}{7}}{|5-\sqrt{37}|} \cdot \frac{\frac{1}{3} \div \frac{3}{4}}{\sqrt{37}+5}
$$

3)
4) A line passes through the points $(-3,8)$ and $(A, 4)$, and has an x-intercept at $x=2$. Find A.
5)
6) \qquad
7) Suppose $M=12\left(\cos \frac{11 \pi}{12}+i \sin \frac{11 \pi}{12}\right)$ and
$N=\frac{7}{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$. Express $M N$ in the form
$C+D i$, where C, D are real numbers.
8) \qquad
9) Find the real number x which maximizes the function
$f(x)=8 x-3 x^{2}$.
10)
11) Find the $37^{\text {th }}$ term of the arithmetic progression whose first three terms are 2,5 , and 8 , respectively
12) \qquad
13) Suppose $\cos \theta=\frac{2}{5}$, where $\frac{3 \pi}{2}<\theta<2 \pi$. Find the exact value of $\tan 2 \theta$.
14) \qquad
15) Find the area of the following triangle:

\qquad sq. units
16) The three numbers 4,5 , and 8 are:
a) the side lengths of an acute triangle.
b) the side lengths of an obtuse triangle.
c) the side lengths of a right triangle.
d) not the side lengths of any triangle.
17) \qquad
18) A farmer bought 749 sheep. She sold 700 of them for the price paid for the original 749 sheep. The remaining 49 sheep were sold at the same price per sheep at which the other 700 sheep were sold. Based on the cost, what is the percent gain on the entire transaction?
19)
20) Find the equation of the line in slope-intercept form that passes through the point $(-1,2)$ and is perpendicular to the line $y=x+\frac{x-3}{2}-\frac{1}{4}$.
21) Assume $B=10, \frac{G}{8}=R, 5 Y=B$ and $2 R=Y$.

Find $(3 B+R)(Y / G)$
14)
15) Suppose that f is a function such that $f(4)=f(5)=2$
$f(6)=1$ and $f(n+1)=\frac{f(n-2) f(n)+4}{f(n-1)}$
15)
16) In the following figure, how long is $\overline{R S}$?

17) Find all real numbers x which satisfy $\frac{e^{x}-5 e^{-x}}{4}=1$.
18) Given real numbers x, y, z such that $0<x \leq 2 y-z$, which of the following statements are true?
a) $z \leq 2 y-x$
b) $2 y \geq z+x$
c) $0<(2 y-z) / x$
d) $-x \geq z-2 y$
e) All of the above statements are true
16) \qquad units
17) \qquad
18)
19) Find real numbers A and B such that

$$
\frac{7 x+5}{x^{2}+x-2}=\frac{A}{x+2}+\frac{B}{x-1}
$$

20) A point P is taken interior to a square of side length $a . P$ is equidistant from two consecutive vertices of the square and from the side opposite these consecutive vertices. If d is the common distance, express d in terms of a.
21)

[^0]: 11)
