## LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2011 Junior Examination (Section I)

| NAME:   | Address:   |  |
|---------|------------|--|
| SCHOOL: | City/ZIP:  |  |
|         | Telephone: |  |

**Directions:** For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) Suppose the perimeter of a square is increased by 8 units. If the area of the new square is 196 square units, what is the length of a side of the original square?
- 1)\_\_\_\_\_
- 2) There are 3 math courses and 4 science courses offered in a school. If a student wants to select 3 courses with at least one course from the math courses and one course from the science courses, how many choices does he/she have?
- 2)\_\_\_\_\_

- **(a)** 30
- **(b)** 35

4) Find the distance between P = (2, -3) and Q = (6, 4).

**(c)** 42

(d) 48

3)

3) Express  $10^{3 \log 5} + \log_4 16^{20}$  as an integer.

- 4)
- **5)** An instructor is writing a *true* or *false* quiz with 10 questions and wants 4 questions to have *true* as the answer. How many different versions of the quiz are possible?
- 5)\_\_\_\_\_
- 6) Find all vertical asymptotes of the function  $f(x) = \frac{x-3}{x^2-x-6}$ .
- **6**) <u>x</u> = \_\_\_\_\_

7) What is the area of the triangle shown below?

7)\_\_\_\_\_



- 8) Find all real solutions to the equation (x-5)(x-6) = x-5.
- 8) *x* =
- **9**) The sum of the squares of three consecutive even integers is 980. Find the three integers.
- 9)\_\_\_\_\_
- 10) How many rational roots does  $f(x) = x^3 5x^2 2x + 24$  have?
- 10)\_\_\_\_\_

- **(a)** 0
- **(b)** 1
- (c)2
- **(d)** 3

$$\begin{cases} x \ge 0 \\ x - y - 1 \ge 0 & ? \ \mathbf{11}) \\ 3x - 2y - 6 \le 0 \end{cases}$$

**12)** What is the domain of the function 
$$f(x) = \sqrt{\frac{x+3}{x^2-1}}$$
?

13) Find the period of 
$$y = 5\cos(4x + 3\pi)$$
.

**14)** Express 
$$\frac{(5+i)(4-i)}{2i-3}$$
 in the form  $a+bi$ .

**15**) How many solutions does 
$$\tan \frac{x}{2} - \cos x = 0$$
 have on  $[0, 2\pi]$ ?

(a) 
$$0$$
 (b)  $1$  (c)  $2$  (d)  $3$ 

**16)** Let 
$$f(x) = \begin{cases} \log_2 x, x > 0 \\ \log_{\frac{1}{2}} |x|, x < 0 \end{cases}$$
. Then  $f(a) > f(-a)$ 

for which values of a?

(a) 
$$(-1, 0) \cup (0, 1)$$

(a) 
$$(-1, 0) \cup (0, 1)$$
 (b)  $(-\infty, -1) \cup (1, +\infty)$ 

**(c)** 
$$(-1, 0)$$
 ∪  $(1, ∞)$ 

(c) 
$$(-1, 0) \cup (1, \infty)$$
 (d)  $(-\infty, -1) \cup (0, 1)$ 

17) If 
$$\cos\left(\frac{5\pi}{12} + \alpha\right) = \frac{1}{3}$$
 and  $-\pi < \alpha < -\frac{\pi}{2}$ , then  $\cos\left(\frac{\pi}{12} - \alpha\right) = \underline{\qquad}$ .

**18)** Let 
$$f(x) = x^2 - |x|$$
. What values of *m* satisfy  $f(-m^2 - 1) < f(2)$ ?

**19)** If 
$$a = \sqrt{7} - 1$$
, then  $3a^3 + 12a^2 - 6a - 12 = ...$ 

**20**) If a circle on the left side of the y-axis has a center on the x-axis and a radius of 
$$\sqrt{5}$$
, and is tangent to the straight line  $x + 2y = 0$ , then the equation of the circle is

(a) 
$$(x - \sqrt{5})^2 + y^2 = 5$$

**(b)** 
$$(x + \sqrt{5})^2 + y^2 = 5$$

(c) 
$$(x-5)^2 + y^2 = 5$$

**(d)** 
$$(x+5)^2 + y^2 = 5$$

LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2011 Junior Examination
(Section II)

| NAME:                                                                                                                                        | Address:                           |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| SCHOOL:                                                                                                                                      | City/ZIP:                          |
|                                                                                                                                              | Telephone:                         |
| <b>Directions:</b> For each problem, write your answer in Simplify all fractions and radicals. Your answer mus                               |                                    |
| 1) If the area of an equilateral triangle is $7\sqrt{3}$ square the length of a side of the triangle?                                        | are units, what is 1)              |
| 2) What is the circumference of a circle that is centered and contains the point (4, 9)?                                                     | ered at (2, 6) 2)                  |
| 3) Find all real solutions to the inequality $ x + 3 $ –                                                                                     | $ x-2  \ge 3$ . 3)                 |
| 4) Find all real solutions to $(9x^2)2^x - 2^x = 0$ .                                                                                        | <b>4</b> )_ <i>x</i> =             |
| 5) Factor $x^3 + 2x^2 + 4x + 8$ completely.                                                                                                  | 5)                                 |
| 6) Find the vertex of the parabola $2x^2 + 8x + 1$ .                                                                                         | 6)                                 |
| 7) $(\sqrt{3} + i)^8$ is equal to:<br>(a) $-128 - 128\sqrt{3}i$ (b) $128\sqrt{3} - 128\sqrt{3}i$ (c) $-128\sqrt{3} + 128i$ (d) $-128 + 128i$ | 7)<br>128 <i>i</i><br>8√3 <i>i</i> |
| 8) A rectangle is 3 times as long as it is wide. The rectangle is 32 inches. What is the width of the                                        |                                    |
| 9) What is the exact value of $\cos\left(\arcsin\frac{3}{8}\right)$ ?                                                                        | 9)                                 |
| 10) Find all values $B$ such that the slope of the line p                                                                                    | assing through $10)$ $B =$         |
| the points $(3, -4)$ and $(7, B)$ equals $-\frac{1}{5}$ .                                                                                    |                                    |

(OVER)

|     |       |           |        |       |     |     | 1                  |        |
|-----|-------|-----------|--------|-------|-----|-----|--------------------|--------|
| 11) | Let a | $=\log_3$ | 2, b = | ln 2, | and | c = | $5^{-\frac{1}{2}}$ | , then |

- (a) a < b < c (b) b < c < a
- (c) c < a < b
- (d) c < b < a

12) List all values of A such that 
$$Ax^2 + 7x + 3 = 0$$
 has exactly one real solution.

11)\_\_\_\_

**13**) Suppose 
$$f(x) = x^2 - 1$$
. Find all values of  $m$  such that if  $x \in \left[\frac{3}{2}, \infty\right)$ , then  $f\left(\frac{x}{m}\right) - 4m^2 f(x) \le f(x-1) + 4f(m)$ .

**14)** For which values of *b* does 
$$y = x + b$$
 intersect  $y = 3 - \sqrt{4x - x^2}$ ?

(a) 
$$\left[ -1, 1 + 2\sqrt{2} \right]$$

(a) 
$$\left[-1, 1 + 2\sqrt{2}\right]$$
 (b)  $\left[1 - 2\sqrt{2}, 2 + 2\sqrt{2}\right]$ 

(c) 
$$\left[1 - 2\sqrt{2}, 3\right]$$

(c) 
$$[1-2\sqrt{2}, 3]$$
 (d)  $[1-\sqrt{2}, 3]$ 

15) Find all real solutions to 
$$2 \ln x + \ln 2x = 4 \ln 4 - 3 \ln 2$$
.

(a) 
$$\frac{1}{5}$$

- **(b)**  $\frac{1}{2}$
- (c)  $\frac{3}{10}$

17) Find the rectangular coordinates for the point that has polar coordinates 
$$\left(2, \frac{5\pi}{6}\right)$$
.

**18)** Suppose 
$$f(x) = x^2 + 1$$
. Find  $(f \circ f \circ f)(x)$ .

19) If 
$$f(x) = 2\cos 2x + \sin^2 x - 4\cos x$$
, then the minimum value of  $f(x) =$ \_\_\_\_\_.

**20)** Let 
$$D = \left\{ (x, y) \middle| \begin{array}{l} x + y - 11 \ge 0 \\ 3x - y + 3 \ge 0 \\ 5x - 3y + 9 \le 0 \end{array} \right\}.$$

If  $y = a^x$  intersects the region D, then the value of a is completely determined by which interval?

- (a) (1, 3]
- **(b)** [2, 4)
- (c) (1, 4]
- (d)  $[3, \infty)$

LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2011 Senior Examination
(Section I)

| `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| NAME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |
| SCHOOL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | City/ZIP:              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Telephone:             |
| <b>Directions:</b> For each problem, write your answer in the sp. Simplify all fractions and radicals. Your answer must be considered to the control of the contr |                        |
| 1) What is the least common multiple of 60 and 100?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1)                     |
| 2) The graph of the equation $2x^2 + 3xy + 6y^2 - 4x - $ is $a(n)$ (a) ellipse (b) circle (c) parabola (d) h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| 3) What is the last digit in the number $7^{338}$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3)                     |
| 4) Find all real solutions to the equation $e^{4x} + 4e^{2x} - 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 = 0. 4) $x =$        |
| 5) What is the horizontal asymptote of the function $f(x) = \frac{9x^2 + 6x + 1}{2x^2 + x + 6}$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>5</b> )_ <u>y</u> = |
| 6) Find all real solutions to the inequality $\sqrt{2x^2 + 1}$ –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x \le 1$ . 6)         |
| 7) $(\sin x + \cos x)^2 =$<br>(a) $1 + \sin 2x$ (b) $1 + \cos 2x$ (c) 1<br>(d) both <b>a</b> and <b>c</b> (e) both <b>b</b> and <b>c</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $+ 2\sin x \cos x$     |
| 8) Suppose $f(x) =  \log x $ . If $a \neq b$ and $f(a) = f(b)$ , to in the interval  (a) $(1, \infty)$ (b) $[1, \infty)$ (c) $(2, \infty)$ (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| 9) If $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ and $\sin \alpha = \frac{3}{5}$ , then $\tan \left(\alpha + \frac{\pi}{4}\right) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>9</b> )             |
| 10) Three students and two teachers stand in a line. How lines can be formed in which the two teachers are not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |

to each other?

11) Find the sum of  $1 + 8 + 15 + 22 + \cdots + 204$ .

**12)** If f(x) satisfies f(x + y) = f(x) + f(y) + 2xy,  $x, y \in \mathbb{R}$ , and f(1) = 2, then  $f(-2) = ____.$ 

12)

**13)** Find all real solutions to  $x^{\frac{11}{6}} + x^{\frac{5}{3}} - 2x^{\frac{3}{2}} = 0$ 

**13**) *x* =

**14)** How many terms in the expression  $(x + \sqrt[4]{3} y)^{20}$  have rational coefficients?

**15)** What is the solution to the inequality  $\left| \frac{x-2}{x} \right| > \frac{x-2}{x}$ ?

- (a) (0, 2) (b)  $(-\infty, 0)$  

   (c)  $(2, \infty)$  (d)  $(-\infty, 0) \cup (0, \infty)$
- **16**) Find all values of x such that (k-3)x + (4-k)y + 1 = 0is parallel to 2(k - 3)x - 2y + 3 = 0.

**16**) <u>k</u> = \_\_\_\_

17) What is the remainder when  $x^{2011} + 2011x^{2010} + x^2 + x + 1$ is divided by x + 1?

**17**)

**18**) In a triangle ABC, if  $a^2 - b^2 = \sqrt{3} bc$ , and  $\sin C = 2\sqrt{3} \sin B$ , then  $A = \underline{\hspace{1cm}}$ .

18)



19) Find the equation of the line tangent to the circle  $x^2 + y^2 = 74$ at the point (-5, 7). Write your answer in slope-intercept form. 19)

**20)** If x, y satisfy  $\begin{cases} x + 2y \le 4 \\ x - y \le 1 \\ x + 2 \ge 0 \end{cases}$ , what is the maximum value of z

20)

LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2011 Senior Examination
(Section II)

| (Section II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |                                                  |              |                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|--------------|------------------------------------------------------|--|
| NAME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                  | Address:     |                                                      |  |
| SCHOOL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | City/ZIP: _                                      | City/ZIP:    |                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                  | Telephone:   |                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                  |              | Do not use approximations. ive credit for a problem. |  |
| $i) \sqrt{x^2} = x$ $ii) \text{ all squares}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | are rectangles                                                     | elow are always true?  cal asymptote at $x = -1$ |              | 1)                                                   |  |
| (a) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>(b)</b> 2                                                       | <b>(c)</b> 1                                     | <b>(d)</b> 0 |                                                      |  |
| 2) Factor $x^3 - 2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $x^2 + x$ complete                                                 | ely.                                             |              | 2)                                                   |  |
| 3) If $3x^2 - 4x -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5 = 7$ , then $x^2$                                               | $x^2 - \frac{4}{3}x - 5 = \underline{\qquad}$    |              | 3)                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a of the triangle                                                  | with vertices $A(2, 4)$                          |              | 4)                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H, A + M = T, $H  equal in terms$                                  | and $A = 2T$ , what does of $T$ ?                | oes          | 5)                                                   |  |
| (b) There exis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ins on Thursday<br>ets a Thursday o<br>rsday, it cannot            | 6)                                               |              |                                                      |  |
| 7) A $googol$ is $10$ $\frac{\log(\log(goog)}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 0                                                                | 7)                                               |              |                                                      |  |
| $\mathbf{8)} \ \ f(x) = \left\{ \begin{array}{c} 2^x - x^2 - x^2$ | $\begin{array}{ll} +1, & x < 1 \\ +ax, & x \ge 1 \end{array}$ . If | f(f(0)) = 4a, then                               | <i>a</i> =   | <b>8</b> ) <i>a</i> =                                |  |
| 9) A complex number z satisfies $(1 + 2i)z = 4 + 3i$ . Express z in the form $a + bi$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                  |              | 9) <u>z</u> =                                        |  |
| 10) Find all real solutions to the inequality $\frac{1}{ x+5 } \ge 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                  |              | 10)                                                  |  |

(OVER)





- 12) Given  $f(x) = x^2 + x$  and  $h \ne 0$ , compute and simplify  $\frac{f(x+h)-f(x)}{h}.$
- 12)

13)\_\_\_\_

- 13) The root of  $f(x) = e^x + x 2$  is in the interval
  - (a) (-2, -1)

**(b)** (-1, 0)

(c) (0, 1)

- (d) (1, 2)
- **14)** If the coefficient of  $x^3$  in  $\left(x + \frac{a}{x}\right)^3$  is 10, then  $a = \underline{\phantom{a}}$ .
- **14**) *a* = \_\_\_\_\_
- **15)** In a triangle ABC, D and E are on the sides  $\overline{AB}$  and  $\overline{AC}$ , respectively.  $\overline{DE} \parallel \overline{BC}$ . If  $\frac{AD}{\overline{AB}} = \frac{3}{4}$  and  $\overline{AE} = 6$ , then
- 15)  $\overline{AC} =$
- **16)** A number is called *perfect* if it is the sum of all its positive integral divisors except itself. The number 6 is perfect. Another perfect number is
  - (a) 36
- **(b)** 24
- (c) 18
- (d) 28
- 17) If an odd function f(x) is increasing on  $(0, \infty)$ , and f(1) = 0, then  $\frac{f(x) - f(-x)}{r} < 0$  for which values of x?
- 17)

16)\_\_\_\_\_

- (a)  $(-1, 0) \cup (1, \infty)$  (b)  $(-\infty, -1) \cup (0, 1)$  

   (c)  $(-\infty, -1) \cup (1, \infty)$  (d)  $(-1, 0) \cup (0, 1)$
- **18**) Let  $A = \left\{ (x, y) \mid \frac{x^2}{4} + \frac{y^2}{16} = 1 \right\}$  and  $B = \left\{ (x, y) \mid y = 3^x \right\}$ .

(a) 4

**(b)** 3

How many subsets does  $A \cap B$  have ?

(c) 2

**(d)** 1

- 19) Find all values of m such that the straight line  $\sqrt{3} x y + m = 0$ is tangent to the circle  $x^2 + y^2 - 2x - 2 = 0$ .
- **19**) *m* = \_\_\_\_\_
- **20)** If x and y satisfy  $\begin{cases} y \le 1 \\ x + y \ge 0 \\ x y 2 \le 0 \end{cases}$ , what is the maximum value of z if z = x - 2y?