LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2011 Junior Examination (Section I)

NAME:	Address:	
SCHOOL:	City/ZIP:	
	Telenhone.	

(d) 48

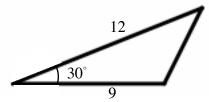
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) Suppose the perimeter of a square is increased by 8 units. If the area of the new square is 196 square units, what is the length of a side of the original square?
- 1) 12
- 2) There are 3 math courses and 4 science courses offered in a school. If a student wants to select 3 courses with at least one course from the math courses and one course from the science courses, how many choices does he/she have?

(c) 42

2)______a

3) Express $10^{3 \log 5} + \log_4 16^{20}$ as an integer.


(b) 35

(a) 30

- 3) 165
- 4) Find the distance between P = (2, -3) and Q = (6, 4).
- **5)** An instructor is writing a *true* or *false* quiz with 10 questions and wants 4 questions to have *true* as the answer. How many different versions of the quiz are possible?
- **5**) 210
- 6) Find all vertical asymptotes of the function $f(x) = \frac{x-3}{x^2 x 6}$.
- **6**) <u>x</u> = <u>-2</u>

7) What is the area of the triangle shown below?

7) <u>27</u>

- 8) Find all real solutions to the equation (x-5)(x-6) = x-5.
- 8) x = 5, 7
- **9)** The sum of the squares of three consecutive even integers is 980. Find the three integers.
- 9) -20,-18,-16 and 16,18,20
- 10) How many rational roots does $f(x) = x^3 5x^2 2x + 24$ have?

- **(a)** 0
- **(b)** 1
- (c)2
- **(d)** 3

$$\begin{cases} x \ge 0 \\ x - y - 1 \ge 0 & ? \ 11) & 4 \\ 3x - 2y - 6 \le 0 \end{cases}$$

12) What is the domain of the function
$$f(x) = \sqrt{\frac{x+3}{x^2-1}}$$
?

13) Find the period of
$$y = 5\cos(4x + 3\pi)$$
.

13)____
$$\frac{\pi}{2}$$

14) Express
$$\frac{(5+i)(4-i)}{2i-3}$$
 in the form $a+bi$.

15) How many solutions does
$$\tan \frac{x}{2} - \cos x = 0$$
 have on $[0, 2\pi]$?

(a) 0 (b) 1 (c) 2 (d) 3
16) Let
$$f(x) = \begin{cases} \log_2 x, & x > 0 \\ \log_{\frac{1}{2}} |x|, & x < 0 \end{cases}$$
. Then $f(a) > f(-a)$

for which values of a?

(a)
$$(-1, 0) \cup (0, 1)$$

(a)
$$(-1, 0) \cup (0, 1)$$
 (b) $(-\infty, -1) \cup (1, +\infty)$

 (c) $(-1, 0) \cup (1, \infty)$
 (d) $(-\infty, -1) \cup (0, 1)$

(c)
$$(-1, 0) \cup (1, \infty)$$

$$(\mathbf{d}) \left(-\infty, -1\right) \cup \left(0, 1\right)$$

17) If
$$\cos\left(\frac{5\pi}{12} + \alpha\right) = \frac{1}{3}$$
 and $-\pi < \alpha < -\frac{\pi}{2}$, then $\cos\left(\frac{\pi}{12} - \alpha\right) = \underline{\qquad}$.

17)_____
$$\frac{-2\sqrt{2}}{3}$$

18) Let
$$f(x) = x^2 - |x|$$
. What values of *m* satisfy $f(-m^2 - 1) < f(2)$?

19) If
$$a = \sqrt{7} - 1$$
, then $3a^3 + 12a^2 - 6a - 12 = ____.$

20) If a circle on the left side of the y-axis has a center on the x-axis and a radius of
$$\sqrt{5}$$
, and is tangent to the straight line $x + 2y = 0$, then the equation of the circle is

(a)
$$(x - \sqrt{5})^2 + y^2 = 5$$

(b)
$$(x + \sqrt{5})^2 + y^2 = 5$$

(c)
$$(x-5)^2 + y^2 = 5$$

(d)
$$(x+5)^2 + y^2 = 5$$

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2011 Junior Examination (Section II)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) If the area of an equilateral triangle is
$$7\sqrt{3}$$
 square units, what is the length of a side of the triangle?

2)____2
$$\sqrt{13}$$
 π _____

3) Find all real solutions to the inequality
$$|x + 3| - |x - 2| \ge 3$$
.

3)____
$$x \ge 1$$
 or $[1, \infty)$ ____

4) Find all real solutions to
$$(9x^2)2^x - 2^x = 0$$
.

4)
$$x = \pm \frac{1}{3}$$

5) Factor
$$x^3 + 2x^2 + 4x + 8$$
 completely.

5)___(
$$x^2 + 4$$
)($x + 2$)____

6) Find the vertex of the parabola
$$2x^2 + 8x + 1$$
.

7) a

7)
$$(\sqrt{3} + i)^8$$
 is equal to:

(b)
$$128\sqrt{3} - 128i$$

(a)
$$-128 - 128\sqrt{3}i$$

(c) $-128\sqrt{3} + 128i$

(d)
$$-128 + 128\sqrt{3}i$$

9) What is the exact value of
$$\cos\left(\arcsin\frac{3}{8}\right)$$
?

10) Find all values *B* such that the slope of the line passing through the points
$$(3, -4)$$
 and $(7, B)$ equals $-\frac{1}{5}$.

10)
$$B = \frac{-24}{5}$$
 or -4.8

(OVER)

						1	
11)	Let a	$= \log_3$	2, b =	ln 2, and	c = 5	$-\frac{1}{2}$	then

- (a) a < b < c
- **(b)** b < c < a
- (c) c < a < b
- (d) c < b < a

12) List all values of A such that
$$Ax^2 + 7x + 3 = 0$$
 has exactly one real solution.

12)
$$\underline{A} = 0, \frac{49}{12}$$

11)_____a

13) Suppose
$$f(x) = x^2 - 1$$
. Find all values of m such that if $x \in \left[\frac{3}{2}, \infty\right)$, then $f\left(\frac{x}{m}\right) - 4m^2 f(x) \le f(x-1) + 4f(m)$.

13)____|
$$m \mid \geq \frac{\sqrt{3}}{2}$$

14) For which values of *b* does
$$y = x + b$$
 intersect $y = 3 - \sqrt{4x - x^2}$?

- (a) $\left[-1, 1 + 2\sqrt{2}\right]$ (b) $\left[1 2\sqrt{2}, 2 + 2\sqrt{2}\right]$
- (c) $[1-2\sqrt{2}, 3]$ (d) $[1-\sqrt{2}, 3]$

15) Find all real solutions to
$$2 \ln x + \ln 2x = 4 \ln 4 - 3 \ln 2$$
.

15)
$$x = \sqrt[3]{16}$$
 or $2^{\frac{4}{3}}$

- **16**) A number is randomly selected from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. What is the probability of getting a number which is a multiple of 3?
- **(b)** $\frac{1}{2}$ **(c)** $\frac{3}{10}$

17) Find the rectangular coordinates for the point that has polar coordinates
$$\left(2, \frac{5\pi}{6}\right)$$
.

18) Suppose
$$f(x) = x^2 + 1$$
. Find $(f \circ f \circ f)(x)$.

18)_
$$x^4 + 4x^6 + 8x^4 + 8x^2 + 5$$
__

19) If
$$f(x) = 2\cos 2x + \sin^2 x - 4\cos x$$
, then the minimum value of $f(x) =$ _____.

20) Let
$$D = \left\{ (x, y) \middle| \begin{array}{l} x + y - 11 \ge 0 \\ 3x - y + 3 \ge 0 \\ 5x - 3y + 9 \le 0 \end{array} \right\}.$$

If $y = a^x$ intersects the region D, then the value of a is completely determined by which interval?

- **(a)** (1, 3]
 - **(b)** [2, 4)
- **(c)** (1, 4]
- **(d)** [3, ∞)

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2011 Senior Examination
(Section I)

(Section	1)
NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the space Simplify all fractions and radicals. Your answer must be con	
1) What is the least common multiple of 60 and 100?	1)300
2) The graph of the equation $2x^2 + 3xy + 6y^2 - 4x - 5y$ is $a(n)$	- 7 = 0 2)a
(a) ellipse (b) circle (c) parabola (d) hyp	erbola
3) What is the last digit in the number 7^{338} ?	3)9
4) Find all real solutions to the equation $e^{4x} + 4e^{2x} - 32 =$	4) $x = \frac{\ln 4}{2}$ or $\ln 2$
5) What is the horizontal asymptote of the function	5) $y = \frac{9}{2}$
$f(x) = \frac{9x^2 + 6x + 1}{2x^2 + x + 6}$?	
6) Find all real solutions to the inequality $\sqrt{2x^2 + 1} - x$	≤1. 6) [0,2]
7) $(\sin x + \cos x)^2 =$ (a) $1 + \sin 2x$ (b) $1 + \cos 2x$ (c) $1 + \cos 2x$ (d) both a and c (e) both b and c	$7) \underline{\qquad d}$ $2\sin x \cos x$
8) Suppose $f(x) = \log x $. If $a \neq b$ and $f(a) = f(b)$, the in the interval (a) $(1, \infty)$ (b) $[1, \infty)$ (c) $(2, \infty)$ (d) $[2, \infty)$	
9) If $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ and $\sin \alpha = \frac{3}{5}$, then $\tan \left(\alpha + \frac{\pi}{4}\right) = $	9)
10) Three students and two teachers stand in a line. How ma	any different 10) 72

lines can be formed in which the two teachers are not next to

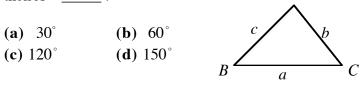
to each other?

11) Find the sum of $1 + 8 + 15 + 22 + \cdots + 204$.

12) If f(x) satisfies f(x + y) = f(x) + f(y) + 2xy, $x, y \in \mathbb{R}$, and f(1) = 2, then $f(-2) = ____.$

12)___ 2

13) Find all real solutions to $x^{\frac{11}{6}} + x^{\frac{5}{3}} - 2x^{\frac{3}{2}} = 0$

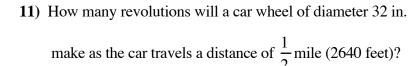

13) x = 0, 1

14) How many terms in the expression $(x + \sqrt[4]{3} y)^{20}$ have rational coefficients?

14) 6

15) What is the solution to the inequality $\left| \frac{x-2}{x} \right| > \frac{x-2}{x}$?

- (a) (0, 2)
- (c) $(2, \infty)$
- (**b**) $(-\infty, 0)$ (**d**) $(-\infty, 0) \cup (0, \infty)$
- **16**) Find all values of x such that (k-3)x + (4-k)y + 1 = 0is parallel to 2(k-3)x - 2y + 3 = 0.
- 17) What is the remainder when $x^{2011} + 2011x^{2010} + x^2 + x + 1$ is divided by x + 1?
- **17**)_____ 2011
- **18**) In a triangle ABC, if $a^2 b^2 = \sqrt{3} bc$, and $\sin C = 2\sqrt{3} \sin B$, then $A = \underline{\hspace{1cm}}$.
- **18**) b



- 19) Find the equation of the line tangent to the circle $x^2 + y^2 = 74$ at the point (-5, 7). Write your answer in slope-intercept form.
- 19)_____ $\frac{5}{7}x + \frac{74}{7}$ _____
- **20)** If x, y satisfy $\begin{cases} x + 2y \le 4 \\ x y \le 1 \\ x + 2 \ge 0 \end{cases}$, what is the maximum value of z
- **20**) 5

LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2011 Senior Examination
(Section II)

NA	ME:	Address:				
SCHOOL:		City/ZIP:	City/ZIP:			
		Telephone:	Telephone:			
	ections: For each problem, write your an applify all fractions and radicals. Your answer					
1)	How many of the statements below are a i) $\sqrt{x^2} = x$ ii) all squares are rectangles iii) $f(x) = \frac{x^2 - 1}{x + 1}$ has a vertical asymptotic form.	stote at $x = -1$	1)2			
	(a) 3 (b) 2 (c) 1	(d) 0				
2)	Factor $x^3 - 2x^2 + x$ completely.		2) $x(x-1)^2$			
3)	If $3x^2 - 4x - 5 = 7$, then $x^2 - \frac{4}{3}x -$	5 =	3)1			
	What is the area of the triangle with verti and $C(-4, 13)$?		4)39			
5)	If $M + T = H$, $A + M = T$, and $A = M + A + T + H$ equal in terms of T ?		5)2 <i>T</i>			
6)	What is the negation of the statement: <i>It</i> (a) It never rains on Thursday. (b) There exists a Thursday on which it (c) If it is Thursday, it cannot be raining (d) None of the above. 	t does not rain.	6)b			
7)	A googol is 10^{100} and a googolplex is $10^{100} \frac{\log(\log(googolplex))}{4}$.) ^{googol} , Find	7)25			
8)	$f(x) = \begin{cases} 2^{x} + 1, & x < 1 \\ x^{2} + ax, & x \ge 1 \end{cases}$ If $f(f(0))$	= 4a, then $a =$.	8) <i>a</i> = _2			
9)	A complex number z satisfies $(1 + 2i)z$ in the form $a + bi$.	= 4 + 3i. Express z	9) <u>z = z - i</u>			
10)	Find all real solutions to the inequality $\frac{1}{ x }$	$\frac{1}{x+5\mid} \ge 4$	10)_ $\left[\frac{-21}{4}, -5\right) \cup \left(-5, \frac{-19}{4}\right]$			

(OVER)

11)
$$\frac{990}{\pi}$$

12) Given
$$f(x) = x^2 + x$$
 and $h \ne 0$, compute and simplify
$$\frac{f(x+h) - f(x)}{h}$$
.

$$12)_{\underline{\hspace{1cm}}2x + h + 1\underline{\hspace{1cm}}$$

13) The root of
$$f(x) = e^x + x - 2$$
 is in the interval

(a)
$$(-2, -1)$$

(b)
$$(-1, 0)$$

(c)
$$(0, 1)$$

(d)
$$(1, 2)$$

14) If the coefficient of
$$x^3$$
 in $\left(x + \frac{a}{x}\right)^5$ is 10, then $a = \underline{\hspace{1cm}}$.

15) In a triangle
$$ABC$$
, D and E are on the sides \overline{AB} and \overline{AC} , respectively. $\overline{DE} \parallel \overline{BC}$. If $\frac{\overline{AD}}{\overline{AB}} = \frac{3}{4}$ and $\overline{AE} = 6$, then $\overline{AC} = \underline{\qquad}$.

$$15) \overline{AC} = 8$$

16) A number is called *perfect* if it is the sum of all its positive integral divisors except itself. The number 6 is perfect. Another perfect number is

(a) 36

17) If an odd function f(x) is increasing on $(0, \infty)$, and f(1) = 0, then $\frac{f(x) - f(-x)}{r} < 0$ for which values of x?

(a)
$$(-1, 0) \cup (1, \infty)$$

(a)
$$(-1, 0) \cup (1, \infty)$$
 (b) $(-\infty, -1) \cup (0, 1)$

 (c) $(-\infty, -1) \cup (1, \infty)$
 (d) $(-1, 0) \cup (0, 1)$

(c)
$$(-\infty, -1) \cup (1, \infty)$$

(d)
$$(-1, 0) \cup (0, 1)$$

18) Let
$$A = \left\{ (x, y) \mid \frac{x^2}{4} + \frac{y^2}{16} = 1 \right\}$$
 and $B = \left\{ (x, y) \mid y = 3^x \right\}$.

How many subsets does $A \cap B$ have?

- (a) 4
- **(b)** 3
- (c) 2
- **(d)** 1

19) Find all values of m such that the straight line
$$\sqrt{3} x - y + m = 0$$
 19) $m = \sqrt{3}$, $-3\sqrt{3}$ is tangent to the circle $x^2 + y^2 - 2x - 2 = 0$.

19)
$$\underline{m} = \sqrt{3}$$
, $-3\sqrt{3}$

20) If x and y satisfy
$$\begin{cases} y \le 1 \\ x + y \ge 0 \\ x - y - 2 \le 0 \end{cases}$$
, what is the maximum value of z if $z = x - 2y$?