Luzerne County Council of Teachers of Mathematics
Wilkes University - 2013 Junior Examination
(Section I)

(Section 1)				
NAME:	Address:			
SCHOOL:	City/ZIP:			
	Telephone:			
Directions: For each problem, write your answer in the sp Simplify all fractions and radicals. Your answer must be of	pace provided. Do not use approximations. complete to receive credit for a problem.			
1) Find all real solutions to the equation $ 6x + 2 = 20$. 1)			
2) Write $\frac{-1+3i}{1+i}$ in the form $a+bi$.	2)			
3) What is the greatest common divisor of 3840 and 806	54? 3)			
4) What is the remainder when $5x^{10} - 4x^2 + 9x - 13$ divided by $x - 1$?	is 4)			
5) What is the principal square root of $(-2013)^2$? (a) -2013 (b) ± 2013 (c) 2013 (d)	±√2013			
6) Find all values of k such that $4x^2 - 2kx + 1$ is a com-	nplete square. 6)k =			
7) Find all real solutions to $4^x - 2^{x+1} - 3 = 0$.	7)			
8) If $f(x) = \begin{cases} x^2 + 1, & x \le 1 \\ \frac{2}{x}, & x > 1 \end{cases}$, then what is the value of $\frac{1}{x}$	f(f(3))? 8)			
(a) $\frac{1}{5}$ (b) 3 (c) $\frac{2}{3}$	$\frac{13}{9}$			
9) Find all real solutions to the inequality $2 \le \log_3 x \le$	5. 9)			
10) If a point $A:(2a + 3b, -2)$ is symmetric to another	point 10)			

B:(6, 3a + 2b) about the x-axis, then what is a + b?

- **11)** If $(-4, y_1)$ and $(2, y_2)$ are on the straight line $y = -\frac{1}{2}x + 2$, then which of the following is true?
- 11)____

- (a) $y_1 > y_2$ (c) $y_1 < y_2$ (d) y_1 and y_2 are not comparable
- **12)** Suppose $f(x) = \sqrt[3]{x+4} 1$. Find $f^{-1}(x)$.

12) $f^{-1}(x) =$

13) Find all real values of x such that $3^{\frac{4}{\log_8 x}} = \frac{1}{27}$.

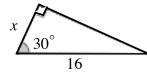
- **14)** How many distinct ordered pairs, (x, y), where x and y are integers, are solutions to the inequality |x| + |y| < 10?
- 14)
- **15**) Find the maximum value of $y = \sqrt{3} \sin x \cos x \sin^2 x$.
- **16**) The solutions to $\frac{x-1}{2x+1} \le 0$ lie in which interval below?
- **16**)

- (a) $(-\frac{1}{2}, 1]$ (c) $(-\infty, \frac{1}{2}) \cup [1, +\infty)$
- **(b)** $[-\frac{1}{2}, 1)$ **(d)** $(-\infty, -\frac{1}{2}] \cup [1, +\infty)$
- 17) Find $\tan 2\alpha$ if $\frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha} = \frac{1}{2}$.

- **18)** If 2 < x < 3, what is the value of $\sqrt{(x-2)^2} + |3-x|$?
- 18)

- **19**) If a and b are two real solutions to $x^2 + x 2009 = 0$ then what is the value of $a^2 + 2a + b$?

20) In the figure below, $m \angle AOP = m \angle BOP = 15^{\circ}$, $\overline{PC} \parallel \overline{OA}$ and $\overline{PD} \perp \overline{OA}$. If $m(\overline{PC}) = 4$, then what is $m(\overline{PD})$?


Luzerne County Council of Teachers of Mathematics Wilkes University - 2013 Junior Examination (Section II)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) For what values of A does the slope of the line passing through the points (A, -4) and (9, 3) equal $\frac{1}{8}$?
- 1) <u>A</u> =
- 2) If $f(x) = x^2 + 1$ and g(x) = x 1 what is $(f \circ g \circ f)(4)$?
- 2)_____
- 3) George is 8 years older than Curtis, and Curtis is five times as old as Sue. The sum of their ages is 85. How old is Curtis?
- 3)_____
- 4) Suppose f(x) = 3 2x + C. Find all values of C such that $f(2) = [f(3)]^2$.
- 4) <u>C</u> =

5) Find the value of *x* in the triangle shown at the right.

- 5)_____
- 6) If two sides of a triangle are 8 in. and 6 in. long, and the third side has a length which is a real solution of $x^2 12x + 20 = 0$, then the perimeter of the triangle is
 (a) 24 (b) 26 and 16 (c) 26 (d) 16
- 6)_____

7) Express $\sqrt[5]{1024}$ as a positive integer.

- 7)_____
- 8) If |x + 1| + |y 2| = 0, then what is the value of x + y?
- 8)_____

9) If $f(x) = \log x$, and f(ab) = 1, then what is the value of $f(a^2) + f(b^2)$?

- 9)_____
- **10)** If in a right triangle ABC, $m\angle CBD = m\angle ABD$, $\overline{DE} \perp \overline{BC}$, $m\angle ABC = 60^{\circ}$ and $m(\overline{BC}) = 10$, then what is the perimeter of $\triangle DEC$?
- 10)_____

B E C

(OVER)

11) In the sequence where $a_1 = \frac{3}{5}$, $a_n = 1 - \frac{1}{a}$, $n \ge 2$,

11)

what is the value of a_{2013} ?

- (a) $-\frac{1}{2}$ (b) $-\frac{2}{3}$ (c) $\frac{3}{5}$ (d) $\frac{5}{2}$
- 12) If $f(x) = \sin\left(\frac{x+\varphi}{3}\right)$, $\varphi \in [0, 2\pi)$ is an even function, then what is the value of φ ?
- 13) If $\sin \alpha \cos \alpha = \sqrt{2}$ and $\alpha \in (0, \pi)$, then $\sin 2\alpha = ?$

 - (a) -1 (b) $-\frac{\sqrt{2}}{2}$ (c) $\frac{\sqrt{2}}{2}$
- **14**) A point P is randomly selected on a line segment \overline{AB} of length 10. A square is built upon \overline{AP} . What is the probability that the square

has an area between 25 cm^2 and 49 cm^2 ?

- **15**) What is the inverse function of $f(x) = \sqrt{x+1}$ if $x \ge -1$?
- 15)

- (a) $y = x^2 1, x \ge 0$ (b) $y = x^2 + 1, x \ge 0$ (c) $y = x^2 1, x \ge 1$ (d) $y = x^2 + 1, x \ge 1$
- **16)** What is the value of $2a^2 + 2a + 2001$ if $a^2 + a 5 = 1$?
- 16) _____
- 17) The rectangular coordinate representation of the polar equation $r = \frac{1}{\cos\theta + \sin\theta}$ is given by which of the following?

- (a) $y = 1 x^2$
- **(b)** $y = 1 + x^2$
- **(d)** y = 1 x
- **18**) What is the value of $x^2 + y^2$ if $\left| x \frac{1}{2} \right| + \left(2y + 1 \right)^2 = 0$?

- (a) 0 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) 1
- **19)** What is the coefficient of the x^3y^{11} term in the expansion of $(3x + y)^{14}$?
- 19)

20) Find all real solutions to $|x^2 - 3x - 4| > x + 1$.

20)____

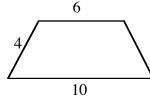
Luzerne County Council of Teachers of Mathematics Wilkes University - 2013 Senior Examination (Section I)

NAME: ______ Address: ______

SCHOOL: _____ City/ZIP: ______

Telephone: _____

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.


1) Find the domain of the function $f(x) = \sqrt{\frac{2x}{x^2 - 4}}$.

- 1)_____
- 2) Factor the following expression completely: $x^3 3x^2 25x 21$.
- 2)_____
- 3) Express $(\sqrt{2} \sqrt{-6})(\sqrt{6} \sqrt{-2})$ in the form a + bi.
- 3)_____
- 4) If $f(x) = \begin{cases} x+1, & x \ge 0 \\ x^2, & x < 0 \end{cases}$, then what is the value of f(-2)?
- 4)_____

- **(a)** 1
- **(b)** 2
- (c) 4

5)

5) Find the area of the given isosceles trapezoid if its perimeter is 24.

(d) 5

- 6) If z is complex and $z \cdot (1 i) = 2$, then what is the value of z?
- 7) Four consecutive even integers have a sum of 380. What is the smallest of the four integers?

8) The foci of the ellipse $\frac{x^2}{7} + \frac{y^2}{16} = 1$ are given by:

8)_____

- **(a)** (0,-3) and (0, 3) **(b)** (0,-4) and (0, 4)
- (c) (-3,0) and (3,0) (d) (-4,0) and (4,0)
- 9) Find all real solutions to the system $\begin{cases} x^2 + 2y = 12 \\ 2x y = -8 \end{cases}$.

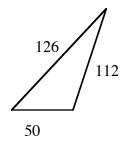
- 9)_____
- 10) If $\tan \alpha$ and $\tan \beta$ are the solutions to $x^2 3x + 2 = 0$, then what is the value of $\tan (\alpha + \beta)$?
- 10)

- **(a)** -3
- **(b)** -1
- **(c)** 3
- (d) 2

(OVER)

11) Find the domain of $f(x) = \sqrt{1 - 2 \log_6 x}$.

- 11)
- **12)** What is the value of $\sqrt[3]{ab}$ if $\sqrt{1-4a} + |b+4| = 0$?
- 12)
- 13) What is the distance between the points (-2, 5) and (3, 7)?
- 13)_____


14) How many real zeros does $f(x) = x^{\frac{1}{2}} - \left(\frac{1}{2}\right)^x$ have?

- **(a)** 0

- **15)** What is the center of the circle $x^2 + y^2 14x + 8y + 49 = 0$?
- 15)

- (a) (-14, 8) (b) (14, -8) (c) (7, -4) (d) (-7, -4)

16) Find the area of the given triangle.

- 17) Find all solutions to the equation $\sin x + 1 = \cos x$ in the interval $[0, 2\pi]$.
- 17)

18) Find all real solutions to $(\log_4 8)(\log_8 6) = \log_2 x$.

- 18)_____
- 19) What is the volume of a pyramid which has a square base with a side of length 4 and a height of 6?
- 19)_____
- **20)** Find the maximum value of $y = \sin x \sqrt{3} \cos x$ if $0 \le x \le 2\pi$.
- 20)

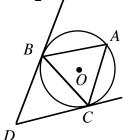
Luzerne County Council of Teachers of Mathematics Wilkes University - 2013 Senior Examination (Section II)

NAME: Address:		s:			
SCHOOL:		City/ZIP:			
		Telephone:			
				led. Do not use approximations. receive credit for a problem.	
1) If the diameter of a circle is doubled, then the area of the circle increases by a factor of ?		1)			
(a) 2	(b) $\sqrt{2}$	(c) $\frac{1}{2}$	(d) 4		
	nation of the line (ir points (7, -2) and		pt form) that passes	2)	
3) If $M = \{ ($ then what is	-	and $N = \left\{ \right.$	$(x, y) \mid x - y = 4 $	3)	
	y = 1	(c) $\{3, -1\}$	}		
(b) (3, -1	.)	(d) $\{(3, -$	1)}		
4) Assume <i>x</i> >	> 0, y > 0 and z > 0	0 . Eliminate	negative exponents	4)	

- and reduce $\left(\frac{x^3y^{-\frac{2}{5}}}{z^4}\right)^{-2} \left(\frac{z^{-1}\sqrt{y}}{\ln e^{\frac{x}{2}}}\right)^3$ to lowest terms.
- **5**) What is the 22^{nd} term of the sequence 20, 12, 4, -4, -12, -20, ...?
- 6) What is the vertex of the parabola $y = 2x^2 + 3x 9$?
- 7) If $f(x) = \frac{x+3}{x+4}$, find $f^{-1}(x)$.
- 8) What is the constant term in the expansion of $\left(\sqrt{x} + \frac{1}{2\sqrt{x}}\right)^{\frac{1}{2}}$?
- (a) $\frac{1}{4}$ (b) $\frac{3}{2}$ (c) $\frac{2}{3}$ (d) 3
- 9) Find all values of x such that $\frac{x}{x+3} + \frac{6}{x^2-9} = \frac{1}{x-3}$.
- **10)** Find the domain of $f(x) = \frac{1}{\ln(x+1)} + \sqrt{4-x^2}$.

- 11) How many different ways can 8 marbles be placed in a row given that 3 are green, 3 are red, and 2 are black?
- 11)

12) Write $(1 + \sqrt{3}i)^8$ in the form a + bi.

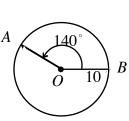

12)____

13) Find all values of k such that $3kx^2 + kx + 7 = 0$ has exactly one real solution.

- 13) k =
- **14)** If the sequence $\{a_n\}_{n \ge 1}$ is given by $a_1 = 0$, $a_2 = -|a_1| + 1$, $a_3 = - \left| a_2 + 2 \right|$, $a_4 = - \left| a_3 + 3 \right|$, ..., then what is the value of a_{2013} ?
- 14)_____

- **(a)** -1005
- **(b)** -1006 **(c)** -1007 **(d)** -2012
- **15**) What does $\tan x$ equal if $\cos x = -\frac{2}{7}$ and $\frac{\pi}{2} \le x \le \pi$?

16) \overline{DB} and \overline{DC} are tangent to $\bigcirc O$. If $m \angle D = 46^{\circ}$, what is $m \angle A$?



- 17) What is the area of a square that has a perimeter that is equal to the circumference of a circle with radius 8?
- 17)_____

18) Evaluate $\cos(\arcsin\frac{4}{5} - \arccos\frac{4}{5})$.

18)_____

19) In the given circle of radius 10, what is the area of sector \widehat{AOB} ?

19)_____

- **20)** What is the minimum value of x + 2y if x and y satisfy

- $\begin{cases} x + y \le 1 \\ x y \le 1 \end{cases}$ $x + 1 \ge 0$
- (a) 3
- **(b)** 1 **(c)** -5
- **(d)** -6