Luzerne County Council of Teachers of Mathematics Wilkes University - 2013 Junior Examination (Section I)

NAME:	Address:	
SCHOOL:	City/ZIP:	
	Telephone:	

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Find all real solutions to the equation |6x + 2| = 20.

2) Write $\frac{-1+3i}{1+i}$ in the form a+bi.

1 + 2i

- 3) What is the greatest common divisor of 3840 and 8064?
- 384

4) What is the remainder when $5x^{10} - 4x^2 + 9x - 13$ is divided by x - 1?

5) What is the principal square root of $(-2013)^2$?

(c)

- (a) -2013

- **(b)** ± 2013 **(c)** 2013 **(d)** $\pm \sqrt{2013}$
- 6) Find all values of k such that $4x^2 2kx + 1$ is a complete square.

7) Find all real solutions to $4^x - 2^{x+1} - 3 = 0$.

- ln 3
- 8) If $f(x) = \begin{cases} x^2 + 1, & x \le 1 \\ \frac{2}{x}, & x > 1 \end{cases}$, then what is the value of f(f(3))?
- (*d*)

- (a) $\frac{1}{5}$ (b) 3 (c) $\frac{2}{3}$ (d) $\frac{13}{9}$
- 9) Find all real solutions to the inequality $2 \le \log_3 x \le 5$.
- 9) $9 \le x \le 243$
- 10) If a point A:(2a + 3b, -2) is symmetric to another point B:(6, 3a + 2b) about the x-axis, then what is a + b?
- 10)

- **11)** If (-4, y_1) and (2, y_2) are on the straight line $y = -\frac{1}{2}x + 2$, then which of the following is true?
- 11)

- (a) $y_1 > y_2$ (c) $y_1 < y_2$ (d) $y_1 = y_2$ (d) y_1 and y_2 are not comparable
- **12)** Suppose $f(x) = \sqrt[3]{x+4} 1$. Find $f^{-1}(x)$.

12) $f^{-1}(x) = (x+1)^3 - 4$

13) Find all real values of x such that $3^{\frac{4}{\log_8 x}} = \frac{1}{27}$.

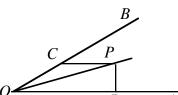
- **14)** How many distinct ordered pairs, (x, y), where x and y are integers, are solutions to the inequality |x| + |y| < 10?
- **14**)
- 15) Find the maximum value of $y = \sqrt{3} \sin x \cos x \sin^2 x$.

(a)

- **16**) The solutions to $\frac{x-1}{2x+1} \le 0$ lie in which interval below?
 - (a) $(-\frac{1}{2}, 1]$ (c) $(-\infty, \frac{1}{2}) \cup [1, +\infty)$

 - **(b)** $[-\frac{1}{2}, 1)$ **(d)** $(-\infty, -\frac{1}{2}] \cup [1, +\infty)$

17) Find $\tan 2\alpha$ if $\frac{\sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha} = \frac{1}{2}$.


18)__ 1

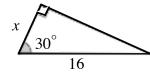
19) If a and b are two real solutions to $x^2 + x - 2009 = 0$ then what is the value of $a^2 + 2a + b$?

18) If 2 < x < 3, what is the value of $\sqrt{(x-2)^2} + |3-x|$?

2008 **19**)

20) In the figure below, $m \angle AOP = m \angle BOP = 15^{\circ}$, $\overline{PC} \parallel \overline{OA}$ and $\overline{PD} \perp \overline{OA}$. If $m(\overline{PC}) = 4$, then what is $m(\overline{PD})$?

20)__


Luzerne County Council of Teachers of Mathematics Wilkes University - 2013 Junior Examination (Section II)

NAME:	Address:	_
SCHOOL:	City/ZIP:	_
	Talanhana	

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) For what values of A does the slope of the line passing through the points (A, -4) and (9, 3) equal $\frac{1}{8}$?
- 1) *A* = 47
- 2) If $f(x) = x^2 + 1$ and g(x) = x 1 what is $(f \circ g \circ f)(4)$?
- **2**)_____257
- 3) George is 8 years older than Curtis, and Curtis is five times as old as Sue. The sum of their ages is 85. How old is Curtis?
- 3)_____35
- 4) Suppose f(x) = 3 2x + C. Find all values of C such that $f(2) = [f(3)]^2$.
- 4) C = 2, 5

5) Find the value of *x* in the triangle shown at the right.

- **5**)_____8√3
- 6) If two sides of a triangle are 8 in. and 6 in. long, and the third side has a length which is a real solution of $x^2 12x + 20 = 0$, then the perimeter of the triangle is
 (a) 24 (b) 26 and 16 (c) 26 (d) 16
- **6**)_____(a)

7) Express $\sqrt[5]{1024}$ as a positive integer.

- 7)_____2
- 8) If |x + 1| + |y 2| = 0, then what is the value of x + y?
- 8)____1

- 9) If $f(x) = \log x$, and f(ab) = 1, then what is the value of $f(a^2) + f(b^2)$?
- 9)_____2
- **10)** If in a right triangle ABC, $m\angle CBD = m\angle ABD$, $\overline{DE} \perp \overline{BC}$, $m\angle ABC = 60^{\circ}$ and $m(\overline{BC}) = 10$, then what is the perimeter of $\triangle DEC$?
- 10) $5\sqrt{3} + 5$

B E C

(OVER)

11) In the sequence where $a_1 = \frac{3}{5}$, $a_n = 1 - \frac{1}{a}$, $n \ge 2$,

11) (c)

what is the value of a_{2013} ?

- (a) $-\frac{1}{2}$ (b) $-\frac{2}{3}$ (c) $\frac{3}{5}$ (d) $\frac{5}{2}$
- 12) If $f(x) = \sin\left(\frac{x+\varphi}{3}\right)$, $\varphi \in [0, 2\pi)$ is an even function, then what is the value of φ ?

- 13) If $\sin \alpha \cos \alpha = \sqrt{2}$ and $\alpha \in (0, \pi)$, then $\sin 2\alpha = ?$
- 13)

- (a) -1 (b) $-\frac{\sqrt{2}}{2}$ (c) $\frac{\sqrt{2}}{2}$
- **14**) A point P is randomly selected on a line segment \overline{AB} of length 10. A square is built upon \overline{AP} . What is the probability that the square has an area between 25 cm² and 49 cm²?
- 14)___

- **15**) What is the inverse function of $f(x) = \sqrt{x+1}$ if $x \ge -1$?
- **15**) (a)
- (a) $y = x^2 1, x \ge 0$ (b) $y = x^2 + 1, x \ge 0$ (c) $y = x^2 1, x \ge 1$ (d) $y = x^2 + 1, x \ge 1$

- **16)** What is the value of $2a^2 + 2a + 2001$ if $a^2 + a 5 = 1$?
- 2013
- 17) The rectangular coordinate representation of the polar equation $r = \frac{1}{\cos\theta + \sin\theta}$ is given by which of the following?
- **17**) (*d*)

- (a) $y = 1 x^2$
- **(b)** $y = 1 + x^2$
- **(d)** y = 1 x
- **18**) What is the value of $x^2 + y^2$ if $\left| x \frac{1}{2} \right| + \left(2y + 1 \right)^2 = 0$?
- 18)__

- (a) 0 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) 1
- **19)** What is the coefficient of the x^3y^{11} term in the expansion of $(3x + y)^{14}$?
- 9828 **19**)

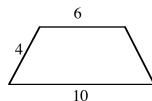
20) Find all real solutions to $|x^2 - 3x - 4| > x + 1$.

20) $(-\infty, 1) \cup (-1, 3) \cup (5, \infty)$

Luzerne County Council of Teachers of Mathematics Wilkes University - 2013 Senior Examination (Section I)

NAME: _____ Address: _____

SCHOOL: ____ City/ZIP: _____


Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Find the domain of the function $f(x) = \sqrt{\frac{2x}{x^2 - 4}}$.

- 1) $(-2, 0) \cup (2, \infty)$
- 2) Factor the following expression completely: $x^3 3x^2 25x 21$.
- 2) (x+1)(x+7)(x+3)
- 3) Express $(\sqrt{2} \sqrt{-6})(\sqrt{6} \sqrt{-2})$ in the form a + bi.
- 3)______
- 4) If $f(x) = \begin{cases} x+1, & x \ge 0 \\ x^2, & x < 0 \end{cases}$, then what is the value of f(-2)?
- **4**)_____(c)

- **(a)** 1
- **(b)** 2
- (c) 4
- **(d)** 5
- **5**) Find the area of the given isosceles trapezoid if its perimeter is 24.

5) 16√3

- 6) If z is complex and $z \cdot (1 i) = 2$, then what is the value of z?
- **6**)_____1 + *i*
- 7) Four consecutive even integers have a sum of 380. What is the smallest of the four integers ?
- 7)_____92

8) The foci of the ellipse $\frac{x^2}{7} + \frac{y^2}{16} = 1$ are given by:

8) (a)

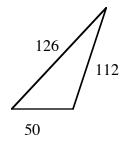
- (a) (0,-3) and (0,3)
- (c) (-3,0) and (3,0)
- **(b)** (0,-4) and (0,4)
- (d) (-4,0) and (4,0)
- 9) Find all real solutions to the system $\begin{cases} x^2 + 2y = 12 \\ 2x y = -8 \end{cases}$.

- 9)____(- 2, 4)
- **10)** If $\tan \alpha$ and $\tan \beta$ are the solutions to $x^2 3x + 2 = 0$, then what is the value of $\tan (\alpha + \beta)$?
- **10**)_____(a)

- **(a)** -3
- **(b)** -1
- **(c)** 3
- (d) 2

(OVER)

11) Find the domain of $f(x) = \sqrt{1 - 2 \log_6 x}$.


- **12**) What is the value of $\sqrt[3]{ab}$ if $\sqrt{1-4a} + |b+4| = 0$?
- **12**)
- 13) What is the distance between the points (-2, 5) and (3, 7)?
- 13)__

14) How many real zeros does $f(x) = x^{\frac{1}{2}} - \left(\frac{1}{2}\right)^x$ have? **(a)** 0 **(b)** 1 **(c)** 2 **(d)** 3

(*b*)

- **15)** What is the center of the circle $x^2 + y^2 14x + 8y + 49 = 0$?
- 15) (c)
- (a) (-14, 8) (b) (14, -8) (c) (7, -4) (d) (-7, -4)

16) Find the area of the given triangle.

- 17) Find all solutions to the equation $\sin x + 1 = \cos x$ in the interval $[0, 2\pi]$.

18) Find all real solutions to $(\log_4 8)(\log_8 6) = \log_2 x$.

- 19) What is the volume of a pyramid which has a square base with a side of length 4 and a height of 6?
- **19**) 32
- **20)** Find the maximum value of $y = \sin x \sqrt{3} \cos x$ if $0 \le x \le 2\pi$.
- **20**) 2

Luzerne County Council of Teachers of Mathematics Wilkes University - 2013 Senior Examination (Section II)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) If the diameter of a circle is doubled, then the area of the circle increases by a factor of?

- (a) 2

 - **(b)** $\sqrt{2}$ **(c)** $\frac{1}{2}$ **(d)** 4
- 2) Find the equation of the line (in slope-intercept form) that passes through the points (7, -2) and (-3, 6).
- $y = -\frac{4}{5}x + \frac{18}{5}$
- 3) If $M = \{ (x, y) | x + y = 2 \}$ and $N = \{ (x, y) | x y = 4 \}$ then what is $M \cap N$?
- (*d*)

- (a) x = 3, y = 1
- (c) $\{3, -1\}$

(b) (3, -1)

- (d) $\{(3, -1)\}$
- **4)** Assume x > 0, y > 0 and z > 0. Eliminate negative exponents and reduce $\left(\frac{x^3y^{-\frac{2}{5}}}{z^4}\right)^{-2} \left(\frac{z^{-1}\sqrt{y}}{\ln z^{\frac{x}{2}}}\right)^3$ to lowest terms.
- **5)** What is the 22^{nd} term of the sequence 20, 12, 4, -4, -12, -20, ...?

6) What is the vertex of the parabola $y = 2x^2 + 3x - 9$?

7) If $f(x) = \frac{x+3}{x+4}$, find $f^{-1}(x)$.

- 8) What is the constant term in the expansion of $\left(\sqrt{x} + \frac{1}{2\sqrt{x}}\right)^{\frac{1}{2}}$?

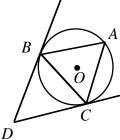
- (a) $\frac{1}{4}$ (b) $\frac{3}{2}$ (c) $\frac{2}{3}$ (d) 3
- 9) Find all values of x such that $\frac{x}{x+3} + \frac{6}{x^2-9} = \frac{1}{x-3}$.

10) Find the domain of $f(x) = \frac{1}{\ln(x+1)} + \sqrt{4-x^2}$.

10) (-1, 2]

11) How many different ways can 8 marbles be placed in a row given that 3 are green, 3 are red, and 2 are black?

12) Write $(1 + \sqrt{3}i)^8$ in the form a + bi.

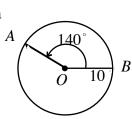

12) = $-128 + (128\sqrt{3})i$

13) Find all values of k such that $3kx^2 + kx + 7 = 0$ has exactly one real solution.

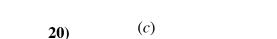
- 13) k = 84
- **14)** If the sequence $\{a_n\}_{n \ge 1}$ is given by $a_1 = 0$, $a_2 = -|a_1| + 1$, $a_3 = - \mid a_2 + 2 \mid$, $a_4 = - \mid a_3 + 3 \mid$, ..., then what is the value of a_{2013} ?
- **14**)____(*b*)

- **(a)** -1005
- **(b)** -1006 **(c)** -1007 **(d)** -2012
- **15**) What does $\tan x$ equal if $\cos x = -\frac{2}{7}$ and $\frac{\pi}{2} \le x \le \pi$?

16) \overline{DB} and \overline{DC} are tangent to $\bigcirc O$. If $m \angle D = 46^{\circ}$, what is $m \angle A$?


- 67° **16**)
- 17) What is the area of a square that has a perimeter that is equal to the circumference of a circle with radius 8?
- **17**)

18) Evaluate $\cos(\arcsin\frac{4}{5} - \arccos\frac{4}{5})$.


18)____

19)___

19) In the given circle of radius 10, what is the area of sector \widehat{AOB} ?

20) What is the minimum value of x + 2y if x and y satisfy

- $\begin{cases} x + y \le 1 \\ x y \le 1 \end{cases}$ $x + 1 \ge 0$
- (a) 3
- **(b)** 1
- **(c)** -5
- **(d)** -6