LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2014 Junior Examination (Section II)

(Section II)					
NAME:	Address:				
SCHOOL:	City/ZIP:				
	Telephone:				
Directions: For each problem, write your answer in the spa Simplify all fractions and radicals. Your answer must be con					
1) Write $\frac{19}{2-i}$ in the form $a + bi$.	1)				
2) Let $M = \{ x \mid (x - 1)^2 < 4, x \in \mathbb{R} \}$ and let $N = \{ -1 \}$ What is $M \cap N$?	1 , 0, 1, 2, 3}. 2)				
3) What is the circumference of a circle whose area is 3π	in ² ? 3)				
4) The negation of the statement "All students find the LC Math Contest fun to take." is given by	CCTM 4)				
 (a) No students find the LCCTM Math Contest fun to (b) Some students find the LCCTM Math Contest fun (c) At least one student does not find the LCCTM Mathematical (d) (a) and (c). 	to take.				
5) If $f(x + 2) = \frac{1}{f(x)}$, for any real x, and $f(1) = -5$, wh	at is $f(5)$? 5)				
6) If a complex number z satisfies $(z-3)(2-i)=5$, the conjugate, \overline{z} , of z?	en what is the 6)				
(a) $2 + i$ (b) $2 - i$ (c) $5 + i$	(d) 5 - <i>i</i>				
7) If a pair of dice are rolled, what is the probability that the a sum other than 2, 6, or 8?	e dice show 7)				
8) Find the sum: $3 + \frac{3}{8} + \frac{3}{64} + \frac{3}{512} + \cdots$.	8)				
9) Find all real solutions to $3 - \frac{17}{x} + \frac{10}{x^2} \ge 0$.	9)				

10) If $f(x) = 4x + \frac{a}{x}$ for a, x > 0 has its smallest value at x = 3, then what does a equal?

10)_____

11)____

12) Find all real solutions to the equation $\sqrt{\sqrt{8x^2 + 20}} = x$.

12)

13) If $a = \log_3 6$, $b = \log_5 10$, and $c = \log_7 14$, then

13)

- (a) c > b > a (c) a > c > b
- **(b)** b > c > a
- (d) a > b > c
- **14)** If x and y satisfies $\begin{cases} x \ge 1 \\ x y + 1 \le 0 \\ 2x y 2 \le 0 \end{cases}$, what is the smallest

14)_____

value of $x^2 + y^2$?

15) A piece of wire 30 inches long is cut into two pieces. One piece is bent into an equilateral triangle and the other is discarded. What is the area of this triangle in terms of x, if the discarded piece of wire was x inches long?

15)

- (a) $\frac{\sqrt{3}}{4} \left(10 \frac{x}{3} \right)^2$ in 2 (c) $\frac{1}{2} \left(10 \frac{x}{3} \right)^2$ in 2
- **(b)** $\frac{\sqrt{3}}{2} \left(10 \frac{x}{3} \right)^2 \text{ in}^2$ **(d)** $\frac{3}{4} \left(10 \frac{x}{3} \right)^2 \text{ in}^2$
- **16)** What is the shortest distance between (0, 1) and a point on the curve $\begin{cases} x = t \\ y = 2t \end{cases}$?

16)

17) Find all real solutions to $4^x - 3 \cdot 2^{x+2} + 20 = 0$.

17)_____

18) Find $\tan(\alpha + \beta)$ if $\tan \alpha = -\frac{1}{3}$ and $\cos \beta = \frac{\sqrt{5}}{5}$ for $\alpha, \beta \in \left(-\frac{\pi}{2}, 0\right)$.

18)

- **19)** If $a_n = n \cos \frac{n\pi}{2}$ for $n \ge 1$, what is $a_1 + a_2 + ... + a_{2014}$?
- 19)
- 20) If $\begin{cases} x \ge 1 \\ x + y \le 3 \end{cases}$ for a > 0, and the smallest value of 2x + y $|y| \ge a(x-3)$

20)_____

equals 1, what is the value of a?

(a) $\frac{1}{4}$

(c) 1

(b) $\frac{1}{2}$

(d) 2

LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2014 Junior Examination
(Section I)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the sp Simplify all fractions and radicals. Your answer must be considered to the control of the contro	
1) What is the sum of the first 10 prime numbers?	1)
2) What does $(f \circ f \circ f)(4)$ equal if $f(x) = 2x + 6$?	2)
3) Find all real solutions to $\frac{2}{x-3} + 2 = \frac{12}{x^2 - 9}.$	3)
4) What is the vertex of the parabola $y = x^2 + 10x - 20$? 4)
5) Find the value of $\left(1 - \sqrt{3}\right)^0 + \left -\sqrt{2}\right - 2\cos 45^\circ$	$+\left(\frac{1}{4}\right)^{-1}$. 5)
6) Matthew, Jacob, Robert, and John stand in a line randow What is the probability that Matthew and John are next	•
7) What is the phase shift of $8\cos(3x - 2\pi) + 1$?	7)
(a) 2π (b) $\frac{2\pi}{3}$ (c) 3 (d) $\frac{1}{3}$	
8) What is the smallest distance between P and Q if P is a circle $(x-3)^2 + (y+1)^2 = 4$ and Q is a point on the	-
(a) 6 (b) 4 (c) 3 (d) 2	
9) Find the inverse function, $f^{-1}(x)$, if $f(x) = \frac{5x + 7}{8 - 9x}$.	9)
10) What is the length of \overline{AC} in the figure below if \triangle As isosceles right triangle and the shaded region is a semicircle having an area of 50π m ² ?	BC is an 10)

(OVER)

- 11) Which complex number, z, satisfies (1 i)z = 2i?
- (a) -1 + i (b) -1 i (c) 1 + i (d) 1 i
- 12) Find $\sin \theta + \cos \theta$ if $\tan \left(\theta + \frac{\pi}{4} \right) = \frac{1}{2}$ when $\frac{\pi}{2} < \theta < \pi$.
- 12)____

13) In \triangle ABC, $m(\overline{AC}) = 3$, $m(\overline{BC}) = \sqrt{5}$, and $\sin C = 2\sin A$. What is $m(\overline{AB})$?

- **14**) If f(x) is an odd function with domain all non-zero real numbers, and $f(x) = x^2 + \frac{1}{x}$ for x > 0, what is f(-1)?
- 14)____

15)_____

- **15)** If $a_0 = 7$ and $a_{n+1} = 2a_n + 1$, for $n \ge 0$, then what is a_{50} ?

 (a) $2^{52} 1$ (b) $2^{53} 1$ (c) $2^{54} 1$ (d) $2^{55} 1$

- **16**) What is the domain of $f(x) = \sqrt{\frac{2x^2 9x 18}{x^2 + 4x 5}}$?

17) Find all real solutions to $e^{x \ln 5} = \sqrt{125}$.

18) Find the sum: 37 + 39 + 41 + 43 + ... + 103.

- **19**) If $y = e^x$ and y = f(x) are symmetric about y = x, then which of following are true?
- 19)_____

- (a) $f(2x) = e^{2x}$
- **(b)** $f(2x) = \ln 2 \cdot \ln x$, (x > 0)
- (c) $f(2x) = 2e^{2x}$
- (d) $f(2x) = \ln 2 + \ln x$, (x > 0)
- **20)** If x and y satisfy $\begin{cases} x + 2y \le 8 \\ 0 \le x \le 4 \\ 0 \le y \le 3 \end{cases}$, what is the largest value of x + y?

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2014 Senior Examination (Section I)

NAME:	Address:	
SCHOOL:	City/ZIP:	
	Talanhana	

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) What is the prime factorization of 31,850?

- 1)
- 2) Find the equation of the line that is perpendicular to 4x 7y = 2 and passes through the point (3, 1). Write your answer in slope-intercept form.
- 2)_____

3) Factor $ab^2 - 4ab + 4a$ completely.

3)_____

4) Find all real solutions to $\frac{x}{x-2} - \frac{1}{x^2-4} = 1$.

- 4)_____
- 5) If the radius of a right circular cylinder is increased by a factor of π , then its volume will increase by what factor?
- 5)____

(a) $\frac{\pi}{2}$ (b) π (c) π^2 (d) 2π

6)

6) Find $\frac{f(x+h) - f(x)}{h}$ if $f(x) = \frac{1}{x+1}$.

7)____

8) Find all values of *k* such that (2, *k*) is 6 units from the point (-3, 6).

7) Find all solutions to $2\sin 2t = -\sqrt{3}$ in $[0, 2\pi]$.

8)_____

9) What is the domain of $y = \frac{\log(x+1)}{x}$?

- 9)_____
- **10)** In $\triangle ABC$, $m(\overline{AC}) = 5$, $m(\overline{BC}) = 3$, and $\sin(\angle BAC) = \frac{1}{3}$.
- 10)_____

What is the value of $\sin(\angle ABC)$?

- **11)** If $y = f(x) + x^2$ is odd, f(1) = 1, and g(x) = f(x) + 2, what is g(-1)?
- 11)

12) If $\sqrt[7]{\sqrt[8]{x^{\log_3 27}}}$ is rewritten as x^c , what is c?

12)

- (a) $\frac{3}{112}$ (b) $\frac{3}{56}$ (c) $\frac{1}{84}$ (d) $\sqrt{\frac{3}{112}}$
- 13) The probability of a day being cloudy is 40% and the probability of it being cloudy and windy is 16%. Given that the day is cloudy, what is the probability that it will be windy?
- 13)____
- **14)** For what values of m does $x^2 3x + m = 0$ have at least one real solution?
- 14)
- **15)** How many real zeros does $f(x) = 2^x + x^3 2$ have in (0, 1)?
- **15**)

- **(a)** 0
- **(b)** 1
- (c) 2
- **(d)** 3
- **16)** Find the real solutions to $\begin{cases} 3x > x 2 \\ \frac{x+1}{3} > 2x \end{cases}$.

- **16**)
- 17) O is the midpoint of the diagonal of rectangle ABCD. M is the midpoint of \overline{AD} . If $m(\overline{AB}) = 5$ and $m(\overline{AD}) = 12$, what is the perimeter of ABOM?
- 17)_____

18)

- **18)** If a > b, c < 0, which of the following must always be true?
 - (a) a + c > b + c
- (c) ac > bc
- **(b)** c a > c b
- (d) $\frac{a}{a} > \frac{b}{a}$
- 19) The three cube roots of 8i are:
 - (a) $\sqrt{3} i, -\sqrt{3} i, \text{ and } -2i$
 - **(b)** $\sqrt{3} + i$, $-\sqrt{3} + i$, and -2i
 - (c) $\sqrt{3} + i \sqrt{3} + i$, and 2i
 - (d) $-\sqrt{3} + i, -\sqrt{3} i$, and 2i
- **20**) Find all real solutions to $3\left(\frac{2}{3}\right)^{x+3} = \frac{2}{3}\left(\frac{2}{9}\right)^{x+2}$.

20)_____

19)____

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics

Wilkes University - 2014 Senior Examination

(Section II)

(Section II)							
NAME:			Ad	Address:			
SC	HOOL:		Cit	ty/ZIP:			
			Tel	lephone:			
				provided. Do not use approximate to receive credit for a problem			
1)	What is $g(1)$ if $f(-1)$ odd and $g(x)$ is even		-1) = 4 , f(x)	is 1)			
	(a) 8 (b)	3 (c) 2	(d) 1				
2)	If $1 + \sqrt{2}i$ is a solute real, then which of the) where b and	c are 2)			
	(a) $b = 2, c = 3$ (b) $b = -2, c = 3$	(c) $b = -2$ (d) $b = 2$,	c = -1 $c = -1$				
3)	Find the exact value of	f $\csc\left(\arctan\frac{7}{3}\right)$.		3)			
	If $x^2 - 4x - 1 = 0$, t $(2x - 3)^2 - (x + y)($	then what is the value of		4)			
5)	If $\left(8, -\frac{5\pi}{4}\right)$ is a point		what is its	5)			
	rectangular coordinate	•					
6)		picture is 3 inches wide onger than it is wide. I nches, how long is the	f the area of th				
		$[\log_+ x, x \ge 1]$					
7)	Find the range of $f(x)$	$(x) = \begin{cases} 0 & \frac{1}{2} \\ 2^x, & x < 1 \end{cases}$	•	7)			
	Find the maximum val			8)			
9)	The graph of the polar		5 + 4sinθ	9)			
	represents which of th (a) a circle (b) a line	e following: (c) a triangle (d) a parabola					
10)	Factor $x^3 + 10x^2 + 1$	7x - 28 completely.		10)			

11) What does a equal if the coefficient of x^2 in the expansion of $(1 + ax)(1 + x)^5$ is 5?

11)

12) Initially a large pitcher contains 60 ounces of lemonade that is 10% lemon juice. How many ounces of 100% pure lemon juice should be added to the pitcher if the lemonade is to contain 28% lemon juice?

12)____

13) Find all real solutions to $\left| \frac{2x+3}{x} \right| \le 8$.

14) Find all real solutions to the system $\begin{cases} x^3 + x = 5y \\ 2x - y = 0 \end{cases}$.

14)_____

15) Rewrite the expression $\frac{5+x}{\sqrt[3]{x}}$ so that its denominator is rationalized.

16) What is $\cos \alpha$ if $\sin \left(\frac{5\pi}{2} + \alpha \right) = \frac{1}{5}$?

(a) $-\frac{2}{5}$ (b) $-\frac{1}{5}$ (c) $\frac{1}{5}$ (d) $\frac{2}{5}$

17)

17) If a real number, x, is randomly selected from [-1, 1], what is the probability that $\cos \frac{\pi x}{2}$ is between 0 and $\frac{1}{2}$?

(a) $\frac{1}{3}$ (b) $\frac{2}{\pi}$ (c) $\frac{1}{2}$ (d) $\frac{2}{3}$

18) Find c in the triangle below.

19) Find all real solutions to $\log_6(x-2) + \log_6(x-3) = \log_6 12$.

19)_____

20) Find β if $\cos \alpha = \frac{1}{7}$ and $\cos (\alpha - \beta) = \frac{13}{14}$ for $0 < \beta < \alpha < \frac{\pi}{2}$. **20**)_____