LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics

Wilkes University - 2015 Junior Examination

(Section I)

(36)	Cuon 1)
NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the Simplify all fractions and radicals. Your answer must be	e space provided. Do not use approximations. se complete to receive credit for a problem.
1) If a fair coin is flipped 4 times, what is the probabil of getting exactly 2 heads and 2 tails?	ity of 1)
2) Find a function that expresses the area, A, of a squalength s in terms of its perimeter, p.	are of side 2)
3) Compute $\frac{f(x+h) - f(x)}{h}$ for $f(x) = 2x^2 + 3x$. 3)
4) What is the real part of the complex number $(5 - 2)$	
5) The domain of the function $y = \frac{\sqrt{x}}{2x - 1}$ is	
(a) $x \ge 0$ (b) $x \ne$	$\frac{1}{2}$
(c) $x \ge 0$ and $x \ne \frac{1}{2}$ (d) all real	l values
6) If set $M = \{0, 1, 2\}$ and set $N = \{x \mid x^2 - 3x + 1\}$	$2 \le 0$, 6)
then $M \cap N =$ (a) $\{1\}$ (b) $\{2\}$ (c) $\{0,1\}$ (d) $\{1,2\}$	
7) If $x^2 + 16x + k$ is a complete square, then what is (a) 64 (b) 48 (c) 32 (d)	the value of <i>k</i> ? 7)
8) If $f(x) = \begin{cases} x+2 & x < 0 \\ \sqrt{9x} & 0 \le x \le 3 \text{, then what is the val} \\ x^2 & x > 3 \end{cases}$ $(f \circ f \circ f \circ f)(-1) ?$	lue of 8)
9) Find all values of k such that $3x^2 + 7x + k \ge 0$	9)
10) Find all real solutions to $ 3x + 8 \ge 1$.	10)

11) All real solutions to $\begin{cases} x(x+2) > 0 \\ |x| < 1 \end{cases}$ are given by

- (a) $\{x \mid -2 < x < -1\}$
- **(b)** $\{x \mid -1 < x < 0\}$
- (c) $\{x \mid 0 < x < 1\}$

- (d) $\{x \mid x > 1\}$
- 12) By how much does the volume of a sphere increase if its radius, r, is increased by 1 unit? Express your answer in terms of r.
- 12)
- 13) Given $f(x) = \frac{6}{x} \log_2 x$, which interval contains the zero point of f(x)?
- 13)____

- (a) (0, 1) (b) (1, 2) (c) (1, 4) (d) $(4, +\infty)$
- **14)** What is the coefficient of x^2y^7 in the expansion of $(x-y)(x+y)^{8}$?

14)

- **15**) What is the maximum value attained by
 - $f(x) = \sin(x + 2\alpha) 2\sin\alpha\cos(x + \alpha)$?

- 15)_____
- **16)** Solve for a in $\log_a 3 + \log_a 12 = 2$. Express your answer as as an integer.

17) Find all real solutions to $\sqrt{20 + \sqrt{x}} - 2 = \sqrt[4]{x}$

18) \overline{AB} and \overline{CD} are two diameters of a circle centered at O. If $m \angle ABC = 30^{\circ}$, then what is $m \angle BAD$?

- (a) 45°
- **(b)** 60°
- (c) 90°
- **(d)** 30°

19) Find all real solutions to |x-1|+|x+2| > 5.

19)

20) Find all real solutions to $e^{4 \ln x} - 4^{\log_2(\sqrt{x})} - 9 = 0$.

20)_____

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2015 Junior Examination (Section II)

NAME:	Address:	
SCHOOL:	City/ZIP:	
	Telephone:	

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) What is the value of
$$(\sqrt{2015} - 1)^0 + \sqrt{18} \sin 45^\circ - 2^2$$
?

2) Write
$$(\sqrt{7} + i\sqrt{5})^2$$
 in the form $a + bi$.

(a)
$$\frac{4}{5}$$
 (b) $\frac{3}{5}$ (c) $\frac{2}{5}$ (d) $\frac{1}{5}$

(b)
$$\frac{3}{5}$$

(c)
$$\frac{2}{5}$$

(d)
$$\frac{1}{5}$$

4) If
$$A = \frac{M}{2}$$
, $A = 3T$, and $T = 4H$, what does $M + A + T + H$ equal when $H = 2$?

7) If
$$a = \frac{1}{2}$$
, then what is the value of $\frac{1+a}{1-a^2} + \frac{2}{1-a}$?

8) The rectangular equation for the polar equation
$$\theta = \frac{\pi}{4}$$
 is given by

(a)
$$x^2 + y^2 = \frac{1}{2}$$

$$(b) y = -x$$

$$(\mathbf{c}) \ y = x$$

(**d**)
$$x^2 + y^2 = \frac{\sqrt{2}}{2}$$

9) Reduce
$$\frac{x^2 + xy - x - y}{x^2 - 1}$$
 to lowest terms.

10) Express
$$\frac{\ln 81 - \ln 9}{\ln 3}$$
 as an integer.

11)

12) If $x = \left(\frac{1}{3}\right)^{-1} + 1$, then what is the value of $\left(1-\frac{1}{r-1}\right)$ ÷ $\frac{x^2-4}{r^2+4r+4}$?

- 12)_
- 13) If f(x) satisfies $f(x + \pi) = f(x) + \sin x$ and f(x) = 0for $0 \le x < \pi$, then $f\left(\frac{23\pi}{6}\right)$ equals _____.
- 13)

(a) $\frac{1}{2}$

(b) $\frac{\sqrt{3}}{2}$

(c) 0

- **(d)** $-\frac{1}{2}$
- **14)** What is the maximum value of $y = \cos 2x + 2\sin x$?
- 15) If the minute hand on a clock is 8 inches long, how far does the tip of the minute hand travel from 12:00 pm to 2:27 pm?
- **15**) in.
- **16)** If f(x) and g(x) are defined on the whole real line, and f(x)is odd and g(x) is even, then which of the following is true?
- **16**)

- (a) $f(x) \cdot g(x)$ is even
- **(b)** $|f(x)| \cdot |g(x)|$ is even
- (c) $f(x) \cdot |g(x)|$ is even (d) $|f(x) \cdot g(x)|$ is odd
- 17) In a rectangle ABCD $m(\overline{AC}) = 8$ cm and $m \angle AOD = 120^{\circ}$, then $m(\overline{AB})$ is

17)_____

- (a) $\sqrt{3}$ cm
 - **(b)** 2 cm
- (c) $2\sqrt{3}$ cm
- (d) 4 cm

18) What is the value of the sum below?

18)

- $1 + \frac{2}{3} + \frac{1}{2} + \frac{2}{9} + \frac{1}{4} + \frac{2}{27} + \frac{1}{8} + \frac{2}{81} + \cdots$
- **19**) Suppose the first digit of a 2-digit number is represented by x and the second digit by y, where $x, y \ge 0$. Which of the following represents the product of this number and a 2-digit number where the first digit is represented by y and the second digit is represented by x?
- 19)_____

(a) 2xy

- **(b)** x^2y^2
- (c) $x^2 + y^2 + 2xy$
- **(d)** $10x^2 + 10y^2 + 101xy$
- **20)** If x and y satisfy $\{x + y \le 1 \text{ and the smallest value and the largest}\}$
 - 20)

value of z = 2x + y are m and M respectively, then what is the value of M - m?

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2015 Senior Examination
(Section I)

NAME:	Add	ress:
SCHOOL:	City	/ZIP:
	Tele	phone:
	m, write your answer in the space prolicals. Your answer must be complete	
1) What is the distance between	ween the points $(4, 2)$ and $(-3, 7)$? 1)
2) What is the complete factorization of $a^3 - 2a^2 + a$?		2)
3) If $M = \{-1, 0, 1\}$ and $N = \{0, 1, 2\}$, then what is $M \cup N$?		υ N? 3)
4) If a pizza parlor offers 10 toppings, how many different 3 topping pizzas can be made assuming the toppings are unique?		oping 4)
5) What is the largest perfe	ct square less than 800?	5)
6) The graph of $f(\theta) = c$	os $θ$ tan $θ$ + sin $θ$ is symmetric about	6)
(a) the origin.(c) the y-axis.	(b) the <i>x</i>-axis.(d) none of the above.	
7) Express $\frac{\log 0.01^{10}}{\sqrt{0.0001}}$ as an integer.		7)
8) If a complex number, z, equals	satisfies $(3 + 4i)z = 25$, then z	8)
(a) $3 - 4i$ (c) $-3 - 4i$	(b) $3 + 4i$ (d) $-3 + 4i$	
9) If $f(x) = \ln(e^{3x} + 1) + ax$ is an even function, then what is the value of a ?		9)
10) If the points $(-1, y_1)$ and $(2, y_2)$ are on the curve $y = \frac{3 + 2m}{x}$, and $y_1 > y_2$, then m satisfies which of the following?		$\frac{2m}{x}$, 10)
	(b) $m > 0$	

(d) $m < -\frac{3}{2}$

(c) $m > -\frac{3}{2}$

- 11) What is the coefficient of the x^4y^3 term in the expansion of $(x + 2y)^7$?
- 11)_____
- **12)** How many zeros does the function $f(x) = 2^x |\log_{0.5} x| 1$ have? **(a)** 1 **(b)** 2 **(c)** 3 **(d)** 4
- 12)_____
- 13) D and E are the midpoints of \overline{AB} and \overline{AC} respectively. If $m(\overline{DE}) = 5$, then what is $m(\overline{BC})$?
- 13)____

- **14)** What is the value of $(-2)^{-2} + |\sin 30^{\circ} 1| + (\frac{1}{\pi})^{0} + \sqrt{\frac{1}{16}}$?
- 14)_____
- **15)** Find A and B such that $\frac{4x 26}{x^2 + 2x 8} = \frac{A}{x + 4} + \frac{B}{x 2}$.
- **15**) <u>A</u> = <u>B</u> =
- **16**) When 20 apple trees are planted on an orchard, each tree yields 100 apples. The yield per tree reduces by 2 apples for each additional tree that is planted. What is the maximum yield of the orchard?
- 16)_____
- 17) What is the period of the function $f(x) = \frac{\sqrt{3}}{2} \sin 2x + \cos^2 x$?
- 17)_____
- **18)** Find all solutions to $3\sec^2 x 2\tan^2 x = 4$ in $[0, 2\pi)$.
- 18)_____
- **19)** In a geometric sequence $\{a_n\}$, where $a_n > 0$, $n \ge 1$, if $a_2 = 1$ and $a_8 = a_6 + 2a_4$, what is a_6 ?
- 19)_____
- **20**) If a square with side length *s* and an equilateral triangle with side length *l* both have equal areas, then which of the following must be true?
- 20)_____

(a)
$$s = \frac{\sqrt[4]{3}}{2}l$$

(b)
$$l = \frac{\sqrt[4]{3}}{2} s$$

$$(\mathbf{c}) \ s = \frac{4\sqrt{3}}{3}l$$

(**d**)
$$l = \frac{4\sqrt{3}}{3}s$$

LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2015 Senior Examination
(Section II)

(Section)	on n)
NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the s Simplify all fractions and radicals. Your answer must be designed.	pace provided. Do not use approximations. complete to receive credit for a problem.
1) If a die is rolled twice, what is the probability of getting on the two rolls?	
(a) $\frac{1}{18}$ (b) $\frac{1}{9}$ (c) $\frac{1}{6}$	(d) $\frac{1}{12}$
2) What is the equation of the line, in slope-intercept for parallel to $2x - \pi y = 8$ and passes through the point	
3) The difference between the squares of two consecutive odd integers is 232. What are these integers?	e positive 3)
4) What is the value of $\cos 2\theta$ if $\sin \theta + \cos \theta = \frac{1}{5}$ and	$\frac{\pi}{2} \le \theta \le \frac{3\pi}{4}? \qquad 4)$
5) The complex number $\frac{7+i}{3+4i}$ is equal to (a) $1-i$ (b) $-1+i$ (c) $\frac{17}{25} + \frac{13}{25}i$ (d) $-\frac{17}{7} + \frac{25}{7}i$	5)
6) Simplify $\left(\frac{x^{-5}y^9}{2x^4y^3}\right)^{-4}$ by eliminating negative exponent to lowest terms.	nts and reducing 6)
7) What is the constant term in the expansion of $\left(x - \frac{1}{2}\right)$	$\left(\frac{1}{\sqrt{x}}\right)^6$? 7)
8) Find all real solutions to $\frac{1}{x-1} = \frac{3}{2x+3}$.	8)
9) What is the value of $\alpha^2 + 4\alpha + \beta$ if α and β are to of $x^2 + 3x - 7 = 0$?	wo roots 9)
10) If $3x + 2y = 1$ and $2x + 3y = 4$, what is the value	of $x + 4y$? 10)

11) What is the diameter of a circle whose area is 2π square units?

11)_____

12) What is the complete factorization of $x^3 + 6x^2 + 11x + 6$?

12)_____

13)

13) If a < c < 0 < b, then which of the following is true?

(a) abc < 0

(b) abc = 0

(c) abc > 0

(d) undetermined

14) Find the domain of $f(x) = \sqrt{\frac{\ln(x-3)}{\sqrt{x+4}}}$.

14)_____

15) What is a_7 if $a_1 = 2$ and $a_n = na_{n-1}$ for $n \ge 2$?

15)____

16) Find all solutions to $\cos 3x = \frac{\sqrt{2}}{2}$ in $[0, \pi)$.

16)_____

17) In a geometric sequence where s_n represents the n^{th} , partial sum of the sequence, if $s_2 = 3$, and $s_4 = 15$, what is s_6 ?

17)_____

18) The inverse function of $y = \ln(\sqrt[3]{x} + 1)$ is _____.

18)_____

- (a) $y = (1 e^x)^3, x > -1$
- **(b)** $y = (e^x 1)^3, x > -1$
- (c) $y = (1 e^x)^3$, $x \in \mathbb{R}$
- (d) $y = (e^x 1)^3, x \in \mathbb{R}$
- **19)** If f(x) is an odd function on \mathbb{R} , and g(x) = f(x + 2) is an even function on \mathbb{R} , what is f(8) + f(9) if f(1) = 1?

19)_____

20) If x and y satisfy $\begin{cases} x + y - 2 \ge 0 \\ x - y - 2 \le 0 \text{, then the smallest value of } \\ y \ge 1 \end{cases}$

20)_____

z = x + 2y is

- (a) 2
- **(b)** 3
- (c) 4
- (d) 5