LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2015 Junior Examination (Section I)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
	ver in the space provided. Do not use approximations. r must be complete to receive credit for a problem.
1) If a fair coin is flipped 4 times, what is the of getting exactly 2 heads and 2 tails?	probability of $\frac{3}{8}$ $\frac{p^2}{}$
 Find a function that expresses the area, A, of length s in terms of its perimeter, p. 	
3) Compute $\frac{f(x+h) - f(x)}{h}$ for $f(x) = 2x$	$\frac{3}{4x+2h+3}$
4) What is the real part of the complex number	
5) The domain of the function $y = \frac{\sqrt{x}}{2x - 1}$ is	
	(a) $x \neq \frac{1}{2}$
(c) $x \ge 0$ and $x \ne \frac{1}{2}$	I) all real values
6) If set $M = \{0, 1, 2\}$ and set $N = \{x \mid x^2 \mid x^2$	$-3x + 2 \le 0$, 6) d
	b) { 2 } d) { 1, 2 }
 If x² + 16x + k is a complete square, then (a) 64 (b) 48 (c) 32 	what is the value of k? 7)a
8) If $f(x) = \begin{cases} x+2 & x < 0 \\ \sqrt{9x} & 0 \le x \le 3 \text{, then what } \\ x^2 & x > 3 \end{cases}$	is the value of 8) 27
$(f \circ f \circ f \circ f)(-1)$?	$k \ge \frac{49}{12}$ $(-\infty, -3] \cup \left[-\frac{7}{2}, \infty \right)$
9) Find all values of k such that $3x^2 + 7x + 6$	y)(21 [7)
10) Find all real solutions to 3x + 8 ≥ 1.	$(-\infty, -3] \cup [-\frac{\pi}{2}, \infty]$

11) All real solutions to
$$\begin{cases} x(x+2) > 0 \\ |x| < 1 \end{cases}$$
 are given by

c11)

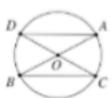
(a)
$$\{x \mid -2 < x < -1\}$$

(b)
$$\{x \mid -1 < x < 0\}$$

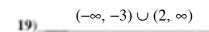
(c)
$$\{x \mid 0 < x < 1\}$$
 (d) $\{x \mid x > 1\}$

(d)
$$\{x \mid x > 1\}$$

$$4\pi r^2 + 4\pi r + \frac{4\pi}{3}$$


13) Given
$$f(x) = \frac{6}{x} - \log_2 x$$
, which interval contains the zero point of $f(x)$?

(a)
$$(0, 1)$$
 (b) $(1, 2)$ (c) $(1, 4)$ (d) $(4, +\infty)$


$$f(x) = \sin(x + 2\alpha) - 2\sin\alpha\cos(x + \alpha)$$
?

17) Find all real solutions to
$$\sqrt{20 + \sqrt{x}} - 2 = \sqrt[4]{x}$$

18) AB and CD are two diameters of a circle centered at O. If $m\angle ABC = 30^{\circ}$, then what is $m \angle BAD$?

18)

19) Find all real solutions to
$$|x-1|+|x+2| > 5$$
.

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2015 Junior Examination (Section II)

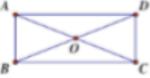
	(Deci	2011 229				
NAME:		Address:				
SCHOOL:		City/ZIP:	City/ZIP:			
		Telephone: _				
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.						
1) What is the	value of $(\sqrt{2015} - 1)^0 + \sqrt{18} \sin^2 \theta$	n45° - 2° ?	1)	0		
2) Write (√	$7 + i\sqrt{5}$ in the form $a + bi$.		2)	$2 + 2\sqrt{35}i$		
	is randomly selected from [-2, 3], what that the number is less than 1?	t is the	3)	b		
(a) $\frac{4}{5}$	(b) $\frac{3}{5}$ (c) $\frac{2}{5}$	(d) $\frac{1}{5}$				
4) If $A = \frac{M}{2}$ equal when	A = 3T, and $T = 4H$, what does $H = 2$?	M+A+T+H	4)	82		
5) What is the	least common multiple of 728 and 676?		5)	9,464		
If the area of of the circle	f a circle is twice its circumference, what e's radius?	is the value	6)	4		
7) If $a = \frac{1}{2}$,	then what is the value of $\frac{1+a}{1-a^2} + \frac{2}{1-a^2}$	2 - a ?	7)	6		
8) The rectang	gular equation for the polar equation θ	$=\frac{\pi}{4}$ is given by	8)	c		
(a) $x^2 + y$	$y^2 = \frac{1}{2}$ (b) $y = -x$					
(c) $y = x$	(d) $x^2 + y^2 = \frac{x^2}{2}$	$\frac{\sqrt{2}}{2}$				
9) Reduce x ²	$\frac{+ xy - x - y}{x^2 - 1}$ to lowest terms.		9)	$\frac{x+y}{x+1}$		
10) Express In	$\frac{81 - \ln 9}{\ln 3}$ as an integer.		10)	2		
				(OVER)		

 e^{2}, e^{3}

12) If $x = \left(\frac{1}{3}\right)^{-1} + 1$, then what is the value of $\left(1 - \frac{1}{x - 1}\right) + \frac{x^2 - 4}{x^2 + 4x + 4}$?

- 12)_____2
- 13) If f(x) satisfies $f(x + \pi) = f(x) + \sin x$ and f(x) = 0for $0 \le x < \pi$, then $f\left(\frac{23\pi}{6}\right)$ equals ______.
- 13)_____a

(a) $\frac{1}{2}$


(b) $\frac{\sqrt{3}}{2}$

(c) 0

- $(d) \frac{1}{2}$
- 14) What is the maximum value of $y = \cos 2x + 2\sin x$?
- 14)_____
- 15) If the minute hand on a clock is 8 inches long, how far does the tip of the minute hand travel from 12:00 pm to 2:27 pm?
- $39\frac{1}{5}\pi$ in.____

b

- 16) If f(x) and g(x) are defined on the whole real line, and f(x) is odd and g(x) is even, then which of the following is true?
 - (a) $f(x) \cdot g(x)$ is even
- **(b)** $|f(x)| \cdot |g(x)|$ is even
- (c) $f(x) \cdot |g(x)|$ is even
- (d) |f(x)-g(x) | is odd
- 17) In a rectangle $ABCD \ m(\overline{AC}) = 8 \text{cm}$ and $m \angle AOD = 120^{\circ}$, then $m(\overline{AB})$ is

17)_____ d

16)

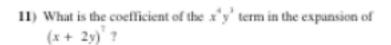
- (a) √3 cm
- (b) 2 cm
- (c) 2√3 cm
- (d) 4 cm

18) What is the value of the sum below?

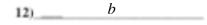
18)_____3

- $1 + \frac{2}{3} + \frac{1}{2} + \frac{2}{9} + \frac{1}{4} + \frac{2}{27} + \frac{1}{8} + \frac{2}{81} + \cdots$
- 19) Suppose the first digit of a 2-digit number is represented by x and the second digit by y, where x, y ≥ 0. Which of the following represents the product of this number and a 2-digit number where the first digit is represented by y and the second digit is represented by x?
- 19)_____ d

(a) 2xy


- **(b)** x^2y^2
- (c) $x^2 + y^2 + 2xy$
- (d) $10x^2 + 10y^2 + 101xy$
- 20) If x and y satisfy $\begin{cases} y \le x \\ x + y \le 1 \end{cases}$ and the smallest value and the largest $2 \le -1$
 - 20)____6

value of z = 2x + y are m and M respectively, then what is the value of M - m?


LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2015 Senior Examination (Section I)

NA	ME:	Ac	idress:		
SCI	HOOL:	Ci	ty/ZIP:		
		Te	lephone: _		
	ections: For each problem, writ applify all fractions and radicals.				
1)	What is the distance between th	ne points (4, 2) and (-3, 7	7)?	1)	√ 74
2) What is the complete factorization of $a^3 - 2a^2 + a$?			2)	$a(a-1)^2$	
3)	If $M = \{-1, 0, 1\}$ and $N =$: {0, 1, 2}, then what is M	∪ N?	3)	{-1, 0, 1, 2}
4)	4) If a pizza parlor offers 10 toppings, how many different 3 topping pizzas can be made assuming the toppings are unique?		topping	4)	120
5)	What is the largest perfect squa	re less than 800?		5)	784
6)	5 1 7 7 7	$\theta + \sin \theta$ is symmetric abo	out	6)	a
	(a) the origin. (c) the y-axis.	(b) the x-axis.(d) none of the above.			
7)	7) Express $\frac{\log 0.01^{10}}{\sqrt{0.0001}}$ as an integer.			7)	-2,000
8)	If a complex number, z, satisfie equals	s(3 + 4i)z = 25, then z		8)	а
	(a) 3 - 4i (c) -3 - 4i	(b) 3 + 4 <i>i</i> (d) -3 + 4 <i>i</i>			$\frac{3}{2}$
9)	If $f(x) = \ln(e^{3x} + 1) + ax$ is the value of a?	s an even function, then wha	nt is	9)	2
10)	If the points $(-1, y_1)$ and $(2, y_2)$ are on the curve $y = \frac{3 + 2m}{x}$,		$\frac{+ 2m}{x}$,	10)	d
and $y_1 > y_2$, then m satisfies which of the following?					
	(a) m < 0	(b) m > 0			
	(c) $m > -\frac{3}{2}$	(d) $m < -\frac{3}{2}$			

12) How many zeros does the function f(x) = 2 | log_{0.5} x | - 1 have?
(a) 1 (b) 2 (c) 3 (d) 4

13) D and E are the midpoints of AB and AC respectively. If m(DE) = 5, then what is m(BC)?

14) What is the value of $(-2)^{-2} + |\sin 30^{\circ} - 1| + (\frac{1}{\pi})^{\circ} + \sqrt{\frac{1}{16}}$?

- 15) Find A and B such that $\frac{4x-26}{x^2+2x-8} = \frac{A}{x+4} + \frac{B}{x-2}$.
- 15) A = 7 B = -3
- 16) When 20 apple trees are planted on an orchard, each tree yields 100 apples. The yield per tree reduces by 2 apples for each additional tree that is planted. What is the maximum yield of the orchard?
- 2,450
- 17) What is the period of the function $f(x) = \frac{\sqrt{3}}{2} \sin 2x + \cos^2 x$?
- 17)_____π
- 18) Find all solutions to $3\sec^2 x 2\tan^2 x = 4$ in $[0, 2\pi)$.
- $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
- 19) In a geometric sequence {a_v}, where a_n > 0, n ≥ 1, if a₂ = 1 and a_s = a_n + 2a₄, what is a_n?
- 19)_____4
- 20) If a square with side length s and an equilateral triangle with side length l both have equal areas, then which of the following must be true?
- 20) a

(a)
$$s = \frac{\sqrt[4]{3}}{2}l$$

(b)
$$l = \frac{\sqrt[4]{3}}{2} s$$

(c)
$$s = \frac{4\sqrt{3}}{3}l$$

(d)
$$l = \frac{4\sqrt{3}}{3}s$$

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics

Wilkes University - 2015 Senior Examination

(Section II)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the s Simplify all fractions and radicals. Your answer must be	
1) If a die is rolled twice, what is the probability of getting on the two rolls?	ng a sum of 5 1)b
(a) $\frac{1}{18}$ (b) $\frac{1}{9}$ (c) $\frac{1}{6}$	12
2) What is the equation of the line, in slope-intercept for	$y = \frac{2}{\pi} x + 2$ m, that is
parallel to $2x - \pi y = 8$ and passes through the poin	$t\left(\frac{\pi}{2}, 3\right)$?
3) The difference between the squares of two consecutive odd integers is 232. What are these integers?	e positive 3) 57, 59
4) What is the value of $\cos 2\theta$ if $\sin \theta + \cos \theta = \frac{1}{5}$ and	
5) The complex number $\frac{7+i}{3+4i}$ is equal to	5)a
(a) $1 - i$ (b) $-1 + i$ (c) $\frac{17}{25} + \frac{13}{25}i$ (d) $-\frac{17}{7} + \frac{25}{7}i$	
6) Simplify $\left(\frac{x^{-5}y^9}{2x^4y^3}\right)^{-4}$ by eliminating negative exponent to lowest terms.	$\frac{16x^{36}}{y^{24}}$ ints and reducing 6)
7) What is the constant term in the expansion of $\left(x - \frac{1}{2}\right)$	$\frac{1}{\sqrt{x}}$ 6 ? 7 2
8) Find all real solutions to $\frac{1}{x-1} = \frac{3}{2x+3}$.	x = 6
9) What is the value of $\alpha^2 + 4\alpha + \beta$ if α and β are to of $x^2 + 3x - 7 = 0$?	wo roots 9)4
10) If $3x + 2y = 1$ and $2x + 3y = 4$, what is the value	of x + 4y? 10)7
	(OVER)

- 11) What is the diameter of a circle whose area is 2π square units?
- 11) $2\sqrt{2}$
- 12) What is the complete factorization of $x^3 + 6x^2 + 11x + 6$?
- (x + 1)(x + 2)(x + 3)

 \boldsymbol{c}

13)

- 13) If a < c < 0 < b, then which of the following is true?
 - (a) abc < 0</p>

(b) abc = 0

(c) abc > 0

- (d) undetermined
- 14) Find the domain of $f(x) = \sqrt{\frac{\ln(x-3)}{\sqrt{x+4}}}$.

14) ____ [4, ∞)

15) What is a_7 if $a_1 = 2$ and $a_n = na_{n-1}$ for $n \ge 2$?

15) 10,080

16) Find all solutions to $\cos 3x = \frac{\sqrt{2}}{2}$ in $[0, \pi)$.

- $\frac{\pi}{12}, \frac{3\pi}{4}, \frac{7\pi}{12}$
- 17) In a geometric sequence where s_n represents the n^{sh}, partial sum of the sequence, if s₂ = 3, and s₄ = 15, what is s_n?
- 17) 63
- 18) The inverse function of $y = \ln(\sqrt[3]{x} + 1)$ is ______.
- 18)_____d

- (a) $y = (1 e^x)^3, x > -1$
- **(b)** $y = (e^x 1)^3, x > -1$
- (c) $y = (1 e^x)^3$, $x \in \mathbb{R}$
- (d) $y = (e^x 1)^3$, $x \in \mathbb{R}$
- 19) If f(x) is an odd function on R, and g(x) = f(x + 2) is an even function on R, what is f(8) + f(9) if f(1) = 1?
- 19)_____1
- **20)** If x and y satisfy $\begin{cases} x + y 2 \ge 0 \\ x y 2 \le 0 \text{, then the smallest value of } \\ y \ge 1 \end{cases}$
- 20)_____b

- z = x + 2y is
- (a) 2
- (b) 3
- (c) 4
- (d) 5