LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2016 Junior Examination (Section I)

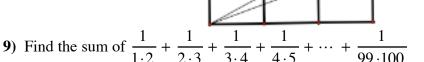
NAME:	Address:	
SCHOOL:	City/ZIP:	_
	Telenhone:	

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) If z = 1 2i, find $\frac{1}{z}$. (Express your answer in the form a + bi)
- 1)_____

- 2) If $A = \{x \mid x 1 > 0\}$ and $B = \{x \mid x \le 3\}$, then $A \cap B = \{x \mid x \le 3\}$

- (a) (-1, 3) (b) (1, 3] (c) [1, 3) (d) [-1, 3]
- 3) What is the range of the function $f(x) = \begin{cases} \frac{1}{x}, & x > 1 \\ -x 2, & x \le 1 \end{cases}$?


- 4) Find the quadratic function whose graph has vertex (-1, 1) and passes through the point (1, 9). (Express your answer in the form $f(x) = ax^2 + bx + c$)

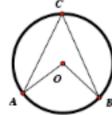
5) $y = \log_{1}(x^{2} - 5x + 6)$ will be increasing in the interval

- (a) $\left(\frac{5}{2}, \infty\right)$ (b) $\left(3, +\infty\right)$ (c) $\left(-\infty, \frac{5}{2}\right)$ (d) $\left(-\infty, 2\right)$
- **6)** Given semicircle O with diameter of length 6 units and $m(\overline{BC}) = 1$, Find $m(\overline{AB})$.

7) What is the value of $\sqrt{9} - 4\sin 30^{\circ} + (2016 - \pi)^{0} - 2^{2}$

- 8) Three equal squares are joined as shown. What is $tan(\alpha + \beta)$?

10) If $\tan\left(\frac{\pi}{4} - \alpha\right) = 3$ then what is the value of $c \tan \alpha$?


10)

- (a) -2 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) 2

(OVER)

- 11) \overline{OA} and \overline{OB} are radii of circle O. C is on the circle. If $\overline{OA} \perp \overline{OB}$ then what is $m \angle ACB$?

- (a) 45°
- **(b)** 35° **(c)** 25° **(d)** 20°

12) If $x = \sqrt{2} + 1$ then $\frac{x+1}{x} \div \left(x - \frac{1+x^2}{2x}\right) - 1 = ?$.

13) Suppose $g(x) = \begin{cases} \arctan |x|, & x \le 0 \\ \cos x, & x > 0 \end{cases}$. Find g(g(-2)).

Express you answer only in terms of square roots of positive

13)_____

- **14)** What is the smallest value attained by $f(x) = \sin x \cos x$?

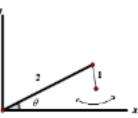
 - (a) -1 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) 1

15) What rational number has a binary representation of $(0.\overline{01})_2 = (0.010101...)_2$?

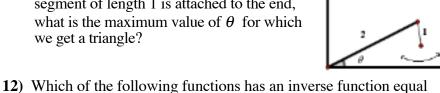
16) If the largest value of x + my is $\frac{5}{3}$ and x and y satisfy

$$\begin{cases} y \ge x \\ y \le 2x \end{cases}$$
, then what is the value of m ?
$$x + y \le 1$$

- 17) Express the solution to $4^x 2^{x+1} 8 < 0$ using interval notation.
- **18**) Let *N* denote a six-digit integer whose 6 digits are 1, 2, 3, 4,5, and 6 in random order. What is the probability that N is divisible by 6?


19) Solve for $x : (3x)^{\ln 3} = (5x)^{\ln 5}$

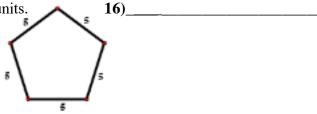
20) How many trailing zeros will there be in 342!?


LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2016 Junior Examination
(Section II)

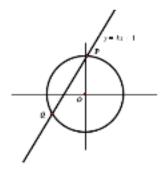
NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the sp. Simplify all fractions and radicals. Your answer must be considered to the specific of the specif	
1) Find the real part of $\frac{4+3i}{1+2i}$.	1)
2) Solve for x : $\begin{cases} 3x - 1 > 5 \\ 2(x + 2) < x + 7 \end{cases}$	2)
3) In $\triangle ABC$ if $m(\overline{BC}) = \sqrt{5}$, $m(\overline{AC}) = 3$ and.	3)
$\sin \angle C = 2 \sin \angle A$, What is $m(\overline{AB})$?	$\int_{\sqrt{2}}^{3} c$
4) If an even function $f(x)$ is increasing on $[0, \infty)$, then	n the range of 4)
x satisfying $f(2x-1) < f\left(\frac{1}{3}\right)$ is	
(a) $\left(\frac{1}{3}, \frac{2}{3}\right)$ (b) $\left[\frac{1}{3}, \frac{2}{3}\right)$ (c) $\left(\frac{1}{2}, \frac{2}{3}\right)$	$(\mathbf{d})\left[\frac{1}{2},\frac{2}{3}\right)$
5) Which of the following is divisible by 6? (a) 10,100,101,022 (b) 10,100,101,012 (c) 10,100,201,022 (d) 11,100,201,022 (e) 11,101,201,022	5)
6) The aspect ratio of a certain screen is 2:1 (so the width screen is double its height). If the diagonal measures is the total area of the screen?	
7) Find the area contained within the ellipse $x^2 + 4y^2 - 2x + 16y + 1 = 0$	7)
8) Find the exact value of $(1-i)^{10}$.	8)
9) The geometric sequence $\{a_n\}_{n\geq 1}$ has a partial sum s_n	53
then $\frac{s_9}{s_6}$ is a) 2 (b) $\frac{7}{3}$ (c) $\frac{8}{3}$	
10) What is the value of the constant term in the expression	on $\left(x^2 + \frac{1}{x}\right)^6$? 10)

11) A line segment of length 2 is elevated at an angle θ from the positive x-axis. If a segment of length 1 is attached to the end,

11)


- 12)
- to itself?
 - (a) $f(x) = x^2$, $x \ge 0$. (b) $f(x) = x^3$, $x \in \Re$

 - (c) $f(x) = e^x$, $x \in \Re$ (d) $f(x) = \frac{1}{x}$, x > 0
- 13) A right triangle has legs of length 2 and 3. A square of side x is inscribed in the triangle so that the square and the triangle share the right angle. Find the perimeter of the square.


- 14) We have a standard deck of cards consisting of 4 Jacks, 4 Queens, 4 Kings, and 4 Aces. If you are dealt 3 cards at random, what is the probability that your hand has at least 2 hearts?
- 14)
- **15)** Find a 4th degree polynomial with integer coefficients having $\sqrt{2} + \sqrt{3}$ as a root.
- 15)
- **16)** Find the area of a regular pentagon with side-length 5 units.

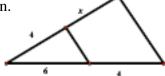
 - (a) $\frac{125}{4} \tan 54^{\circ}$ (b) $\frac{125}{4} \sin 54^{\circ}$.
 - (c) $\frac{125}{4} \tan 72^{\circ}$. (d) $\frac{125}{4} \sin 72^{\circ}$

- 17) Five test scores have an average of 91. a median of 92 and a mode of 95, Find the sum of the lowest two test scores.
- **17**)
- **18)** Ten teams compete in the first round of a playoff tournament. How many different pairings are possible in the first round?
- 18)

19) A straight line, y = kx + 1 intersects a circle $x^2 + y^2 = 1$ at P and Q. If $m \angle POQ = 120^{\circ}$, what is the value of k?

- **20**) Find the smallest possible base, b, such that the integer $(276)_b$ is divisible by 8.
- **20**)

LUZERNE COUNTY MATHEMATICS CONTEST


Luzerne County Council of Teachers of Mathematics Wilkes University - 2016 Senior Examination (Section I)

NAME: _____ Address: ______ City/ZIP: Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) If $z_1 = 1 - i$, $z_1 \cdot z_2 = 1 + i$, then what is z_2 ?

2) Find the value of x in the figure shown.

- 3) If a > 1, $m = \log_a(a^2 + 1)$, $n = \log_a(a 1)$, and $p = \log_a(2a)$, then

- (a) n > m > p
- **(b)** m > p > n

(c) m > n > p

- (d) p > m > n
- **4)** In a sequence $\{a_n\}$, $a_k + a_1 = a_{k+1}$ and $a_1 = \frac{1}{9}$. What is a_{36} ?

5) Find the domain of $f(x) = \ln(\arctan x - 1)$.

- **6)** For what values of k (if any) does the following system have infinitely many solutions?

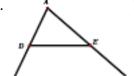
- (2k)x + 6y = 4
- 7) In a geometric sequence if $a_1=1$ and $a_4=\frac{1}{8}$, then the partial sum

- s_{10} is **(a)** $2 \frac{1}{2^8}$ **(b)** $2 \frac{1}{2^9}$ **(c)** $2 \frac{1}{2^{10}}$ **(d)** $2 \frac{1}{2^{11}}$

- 8) Find all solutions to $\log_5(x-2) + \log_5(x^2 + x 7) = 1$.

9) If $f_1(x) = x^{-\frac{1}{3}}$, $f_2(x) = x^{-1}$, and $f_3(x) = x^3$ then $f_1(f_2(f_3(2016))) = ?$

10) $\sin 15^{\circ} \cos 75^{\circ} + \cos 15^{\circ} \sin 105^{\circ} =$


10)

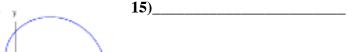
- (a) 0 (b) $\frac{1}{2}$ (c) $\frac{\sqrt{3}}{2}$
- **(d)** 1

11) If the solution x to $\frac{x+k}{x+1} - \frac{k}{x-1} = 1$ is negative, what is the range of k?

12) D and E are on the sides of $\triangle ABC$ and $\overline{DE} \parallel \overline{BC}$. If $m \angle B = 60^{\circ}$, $m \angle AED = 40^{\circ}$, then $m \angle A =$

12)

(a) 100°


- (d) 70°
- **(b)** 90° **(c)** 80°
- 13) Find all solutions to $\ln(\sin(x + |x|)) = 0$.

13)

14)____

- **14)** If a point (3, 1) is on the curve of $f(x) = ax^2 2ax + b$, $(x \ge 1)$, and the curve of $f^{-1}(x)$, the inverse function of f(x),
 - (a) $a = \frac{1}{2}, b = \frac{5}{2}$ (b) $a = \frac{1}{2}, b = -\frac{5}{2}$

 - (c) $a = -\frac{1}{2}$, $b = \frac{5}{2}$ (d) $a = -\frac{1}{2}$, $b = -\frac{5}{2}$
- **15)** Find all angles, $0 \le \theta \le 2\pi$, for which the cardiod $r = 2(1 + \cos \theta)$ intersects the unit circle.

- **16**) There are 12 balls in an urn labeled by the numbers 1, 2, ..., 11, 12. If two balls are taken from the urn at one time, what is the probability of getting at least one ball with an even number?
- 16)
- 17) Three positive integers multiply together to give 156. Two of the integers are even. Also, the sum of two of the integers is $\frac{5}{2}$ of the third. Find the three integers.
- 17)

18) What is the minimum value attained by $f(x) = \sqrt{3} \sin 2x - 2\sin x?$

18)

- **19**) Find the remainder when the polynomial $x^{101} + x^{51} + x^{33} + x^{8} + x + 3$ is divided by $x^{3} - x$.

20) The following expression evaluates to what integer? $\ln(2\cos 15^{\circ})$ $\ln(2\sin 15^\circ)$

20)_____

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2016 Senior Examination (Section II)

NAME: _____ Address: _____ SCHOOL: City/ZIP:

Telephone: ______

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) If
$$M = \{-1, 1\}$$
 and $N = \{x \mid \frac{1}{2} < 2^{x+1} < 4\}$, then what is $M \cap N$?

2)
$$f(x) = \begin{cases} x^2 - 4x + 6, & x \ge 0 \\ x + 6, & x < 0 \end{cases}$$
. The solution to $f(x) > f(1)$ is

(a)
$$(-3, 1) \cup (3, \infty)$$
 (b) $(-3, 1) \cup (2, \infty)$

 (c) $(-1, 1) \cup (3, \infty)$
 (d) $(-\infty, -3) \cup (1, 3)$

(b)
$$(-3, 1) \cup (2, \infty)$$

(c)
$$(-1, 1) \cup (3, \infty)$$

(d)
$$(-\infty, -3) \cup (1, 3)$$

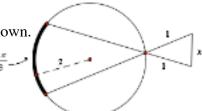
3) What is the period of
$$f(x) = \sin 2x \cos x + \cos 2x \sin x$$
?

3)_____

4) If
$$a^x = b^y = 3$$
 and $a + b = 2\sqrt{3}$ when $x, y \in \Re$, $a > 1, b > 1$,

what is the largest value of $\frac{1}{x} + \frac{1}{y}$?

(b)
$$\frac{3}{2}$$
 (c) 1 **(d)** $\frac{1}{2}$


(d)
$$\frac{1}{2}$$

5) Find the solution to
$$|2x-1|-x<1$$
.

6) Find all x-values where the graph of
$$y = 2x^3 - 3x^2 - 2x + 2$$
 crosses the graph $y = x$. (*Hint*: All x-values are rational)

7)
$$f(x) = \begin{cases} x^2 + x, & x < 0 \\ -x^2, & x \ge 0 \end{cases}$$
. If $f(f(a)) \le 2$, then what is then

8) Find the length of of x in the diagram shown.

9) Let n be any positive integer. What is the remainder when $n^{2} + (n + 1)^{2} + (n + 2)^{2}$ is divided by 3?

9)

10) If
$$\sin \theta + \cos \theta = \frac{1}{5}$$
, and $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$, then what is $\cos 2\theta$?

10)_____

11) If
$$f(x) = 2\sin(\omega x + \varphi)$$
, $x \in \Re$, where $\omega > 0$, $|\varphi| < \frac{\pi}{2}$,

11)

has period π and f(0) = 3, then

(a)
$$\omega = \frac{1}{2}, \, \varphi = \frac{\pi}{6}$$
 (b) $\omega = \frac{1}{2}, \, \varphi = \frac{\pi}{3}$

(b)
$$\omega = \frac{1}{2}, \, \varphi = \frac{\pi}{3}$$

(c)
$$\omega = 2, \, \varphi = \frac{\pi}{6}$$

(c)
$$\omega = 2, \, \varphi = \frac{\pi}{6}$$
 (d) $\omega = 2, \, \varphi = \frac{\pi}{3}$

12) On what interval will
$$\ln(x^2 + 1) - \ln(x + 3)$$
 be negative?

15) If a sequence
$$\{a_n\}_{n\geq 1}$$
 has a partial sum $s_n=n^2-9n$, then $n=?$

17) If an unknown straight line and a straight line
$$x - 2y + 1 = 0$$
 are symmetric about $x = 1$, then the equation of the unknown straight line is

(a)
$$y + 2y - 1 = 0$$

(b)
$$2x + y - 1 = 0$$

(c)
$$2x + y - 3 = 0$$

(a)
$$x + 2y - 1 = 0$$

(b) $2x + y - 1 = 0$
(c) $2x + y - 3 = 0$
(d) $x + 2y - 3 = 0$

18) For what values of x are the numbers
$$0$$
, $\ln(5^x + 1)$, $\ln(5^x + 7)$ consecutive terms of an arithmetic sequence?

19) If x and y, satisfy
$$\begin{cases} x + y \ge 3 \\ x - y \ge -1 \text{ then the smallest value of } \\ 2x - y \le 3 \end{cases}$$

$$2x + 3y$$
 is

20) Find the remainder when
$$\sum_{n=1}^{100} n! = 1! + 2! + 3! + \dots + 99! + 100!$$
 is divided by 14.