Luzerne County Mathematics Contest

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2017 Junior Examination
(Section 1)

NAME: \qquad

SCHOOL:

\qquad
\qquad

ADDRESS:

CITY/ZIP:

\qquad

TELEPHONE:

\qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) If $z_{1}=1-i$ and $z_{1} \cdot z_{2}=1+i$, find z_{2}. Express your answer in the standard form $a+b i$.
2) A rectangle is inscribed in a square as shown. Find the ratio of the inscribed rectangle's area to the area of the outer square.

3) Find $f(f(2))$ for the function

$$
f(x)=\left\{\begin{array}{rl}
\frac{1}{x}, & x>1 \\
-x-2, & x \leq 1
\end{array} .\right.
$$

4) How much does the maximum value of $f(x)=2-2 \sin (x)$ exceed the maximum value of $g(x)=2-(2-x)^{2}$?
5) For how many values of x do the curves $y=x^{2}$ and $y=2^{x}$ intersect?
6) If $\sin \alpha=\sqrt{5} / 5$, then $\sin ^{4} \alpha-\cos ^{4} \alpha$ is equal to
(a) $-1 / 5$
(b) $-3 / 5$
(c) $1 / 5$
(d) $3 / 5$
7) Find all real solutions to the inequality $3 x+5|x|<16$. Express your answer in interval notation.
8) If $x^{2}+(2 m+1) x+m^{2}-1=0$ has two distinct real roots, then the parameter m must lie in what interval? Express your answer in interval notation.
9) California has approximately $25,000,000$ adults. What is the minimum number of 3 -digit area codes needed to ensure that each adult can have a distinct 10-digit phone number. Assume that phone numbers are of the form

$$
\underbrace{N X X}_{\text {Area }}-N X X-X X X X
$$

9)
10) \qquad
11) \qquad
\qquad
12) \qquad

The angle θ indicated above must be equal to
(a) $\arctan (\sqrt{2} / 2)$
(b) $\arctan (\sqrt{3} / 2)$
(c) $\arctan (1 / 3)$
(d) $\arctan (1 / 2)$
11) Find all real solutions to $\sqrt{x}=\sqrt[3]{4 x+25}$.
12) Find all real solutions to the equation

$$
\ln \left(\ln \left(2+\log _{2}(x+1)\right)\right)=0
$$

12) \qquad
13) If the sum of coefficients in the expansion of

$$
\left(x+\frac{1}{x}\right)^{n}
$$

is 64 , then the constant term must be
(a) 10
(b) 20
(c) 30
(d) 120
14) A mother has two children. Find the age of the mother based on the following clues.

1) All ages are integers.
2) The mother is at least 20 years old but no older than 60 .
3)
4) Both children are at least 2 years old.
5) The mother is at least 6 times older than the eldest child.
6) The product of all three ages is 390 .
7) Find the positive integer that is equal to the following expression.

$$
\log _{3}(4) \cdot \log _{4}(5) \cdot \log _{5}(6) \cdots \log _{80}(81)
$$

16) The three sides of a triangle with an angle of 120° are in arithmetic progression with a difference of 2 . Find the lengths of all three sides and list them in order.
17) Which of the following is the lower bound of the range of

$$
f(x)=\frac{1}{1-\arctan (x)}
$$

for values of x less than 0 ?
(a) $1 /(\pi+1)$
(b) $1 /(\pi-1)$
(c) $1 /\left(\frac{\pi}{2}-1\right)$
(d) $1 /\left(\frac{\pi}{2}+1\right)$
18) The hypotenuse of a right triangle with sides 3,4 , and 5 is made into a square as shown to the right. Find the length of segment $A C$ where C is the center of the square.

17)
16)
5) \qquad
\qquad
18) \qquad
19)

$$
\left\{\begin{array}{c}
2 x+y \geq 4 \\
x-y \geq-1 \\
x-2 y \leq 2
\end{array} .\right.
$$

20)

Luzerne County Mathematics Contest

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2017 Junior Examination
(Section 2)
NAME: \qquad

SCHOOL:

\qquad CITY/ZIP: \qquad

TELEPHONE:

\qquad
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) If $A=\{x \mid x-1>0\}$ and $B=\{x \mid x \leq 3\}$, then $A \cap B=$
(a) $(-1,3)$
(b) $(1,3]$
(c) $[1,3)$
(d) $[-1,3]$
2) \qquad
3) Find all strictly positive solutions to

$$
4^{x^{3}-2}=16^{4 x-1}
$$

2) \qquad
3) Suppose that f is an odd function. Find $f(-2)-f(-3)$ given that $f(3)-f(2)=1$.
4) How many triangles have an angle of 60° with an adjacent side of length 4 and an opposite side of length $7 / 2$?
$5)$ If point $(a, 9)$ is on the graph of $y=3^{x}$, compute $\tan \left(\frac{a \pi}{6}\right)$.
5) If x_{0} is the solution to $\left(\frac{1}{2}\right)^{x}=x^{1 / 3}$, then x_{0} is in the interval
(a) $\left(\frac{2}{3}, 1\right)$
(b) $\left(\frac{1}{2}, \frac{2}{3}\right)$
(c) $\left(\frac{1}{3}, \frac{1}{2}\right)$
(d) $\left(0, \frac{1}{3}\right)$
6) \qquad
7) \qquad
8) \qquad
9) \qquad
10) The domain of $f(x)=\sqrt{x+3}+\log _{2}(6-x)$ is
(a) $\{x \mid x>6\}$
(b) $\{x \mid-3<x<6\}$
(c) $\{x \mid x>-3\}$
(d) $\{x \mid-3 \leq x<6\}$
11) \qquad
12) In $\triangle A B C$ shown below, if the length of segment $B C$ is $\sqrt{2}$, the length of segment $A C$ is 2 , and $\sin (m \angle B)+\cos (m \angle B)=\sqrt{2}$, find $m \angle A$, the measure of angle A (in radians).

13) \qquad
14) \qquad
15) Find all solutions to the non-linear system of equations

$$
\left\{\begin{array}{l}
2 x^{2}-4 x y+3 y^{2}=36 \\
3 x^{2}-4 x y+2 y^{2}=36
\end{array}\right.
$$

10) \qquad
which lie in Quadrant II. Give your answers as ordered pairs.
11) Find the smallest positive integer greater than 20 which has a remainder of 2 when divided by 3 and a remainder of 3 when divided by 7 .
12) Find the minimum value of the function

$$
f(x)=\sqrt{2 x^{2}-4 x+7}
$$

13) Find all solutions to

$$
(\sqrt{2+\sqrt{3}})^{x}+(\sqrt{2-\sqrt{3}})^{x}=4
$$

14) If $\tan \left(\theta+\frac{\pi}{4}\right)=\frac{1}{2}$ and $\frac{\pi}{2} \leq \theta \leq \pi$, compute $\sin \theta+\cos \theta$.
15) If $f(x)=a+b x$, what are the real values of a and b such that the following conditions hold?

$$
\begin{aligned}
& f(f(f(0)))=2 \\
& f(f(f(1)))=29
\end{aligned}
$$

13)
14) \qquad
15) \qquad

N
16) A plane flies 100 miles from home base on a bearing of 30° north of due east. The plane then turns 60° toward north and continues flying for 200 miles. Find $\tan (\theta)$ where θ is the bearing (measured north of east) from home base to the final location of the plane.

17) Suppose a and b are integers and that $a \neq 0$. If $a+b<4$ and the quadratic polynomial

$$
f(x)=a x^{2}+4 x+b
$$

17)

has no real roots, what is the largest possible value of b ?
18) Find $\sin (4 \theta)$ if $\sin (\theta)=\frac{4}{5}$ and $\frac{\pi}{2}<\theta<\pi$.
19) Let n be an integer greater than 3 . For what n is the number

$$
(0 . \overline{13})_{n}=0.131313 \ldots(\text { base } n)
$$

19)
20) \qquad
\qquad
the reciprocal of a positive integer?
21) The side-length, ℓ, of a rhombus is equal to the geometric mean of the lengths of its two diagonals. Find $m \angle B$, the angle measure (in degrees) of the obtuse angle in the rhombus.

$$
\begin{aligned}
\ell & =m(A B)=m(B C)=m(C D)=m(A D) \\
d_{1} & =m(A C) \\
d_{2} & =m(B D) \\
\ell & =\sqrt{d_{1} d_{2}}
\end{aligned}
$$

20)

Luzerne County Mathematics Contest

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2017 Senior Examination
(Section 1)
NAME: \qquad

SCHOOL:

\qquad CITY/ZIP: \qquad

TELEPHONE:

\qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) True or False: An irrational number raised to an irrational power is always an irrational number.
2) Write the following complex number in the standard form $a+b i$.

$$
\frac{10 i}{3+i}
$$

3) Simplify the expression

$$
(3-\pi)^{0}+4 \sin \left(\frac{\pi}{4}\right)-\sqrt{8}+|1-\sqrt{3}| .
$$

4) Find all real solutions to the equation

$$
\ln (x)+\ln (x+2)=\ln (x+6)
$$

5) If $a+b=2$, then which of the following choices is equal to

$$
\left(a-\frac{b^{2}}{a}\right)\left(\frac{a}{a-b}\right) .
$$

(a) 2
(b) -2
(c) $\frac{1}{2}$
(d) $-\frac{1}{2}$
6) Find all real solutions to the system of equations below. List your answers as ordered pairs (x, y).

$$
\left\{\begin{aligned}
x^{2}-x y+1 & =0 \\
y & =2 x^{2}
\end{aligned}\right.
$$

6)
7) \qquad
8) \qquad
9)
10) \qquad
\qquad
11) \qquad
12)

五
11) Which of the following sets describes the shaded region in the Venn diagram below?

a) $\left[A^{c} \cup B^{c} \cup C^{c}\right]^{c}$
b) $\left[A \cup B^{c} \cup C^{c}\right]^{c}$
c) $\left[A^{c} \cup B \cup C^{c}\right]^{c}$
d) $\left[A^{c} \cup B^{c} \cup C\right]^{c}$
(S^{c} stands for the complement of the set S relative to the universal set U.)
12) Find p, q, and r with $r<0$ so that

$$
4 x^{4}-12 x^{3}+x^{2}+12 x+4=\left(p x^{2}+q x+r\right)^{2}
$$

12)

is valid for all x. List your answer as a triple (p, q, r).
13) Find the positive integer which is equal to the nested radical expression

$$
\sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+\cdots}}}
$$

13)
14) Find the minimum of the quantity $z=2 x+3 y$ given that x and y satisfy the following conditions.

$$
\left\{\begin{aligned}
x+y & \geq 2 \\
2 x-y & \leq 4 \\
x-y & \geq 0
\end{aligned}\right.
$$

14)
15)
16) If $\sin \theta+\cos \theta=\frac{1}{5}$ and $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{4}$, compute $\cos 2 \theta$.
17) In right triangle $\triangle A B C$, segment $C D$ is the altitude to the hypotenuse $A B$. Segment $C E$ is the median to $A B$. If the measure of angle B is 70°, what is the measure of $\angle D C E$ (in degrees)?

18) What is the largest prime divisor of every 3-digit number with three identical non-zero digits?
19) Two integers are drawn from the set $\{1,2,3, \ldots n\}$ without replacement. Determine n given that the probability that the sum of the two integers is 5 equals $\frac{1}{14}$.
20) Let points A and B be the centers of two circles with radii equal to 1. Assume that A and B are 1 unit apart. Find the area of the intersection of these two circles.

21)
22)
23) \qquad
)
24) \qquad
25) Suppose a and b are positive integers satisfying

$$
\begin{aligned}
a b & =a^{b} \\
\frac{a}{b} & =a^{2 b}
\end{aligned}
$$

20) \qquad

Find $8 a+3 b$.

Luzerne County Mathematics Contest

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2017 Senior Examination
(Section 2)

NAME: \qquad

SCHOOL:

\qquad
\qquad

ADDRESS:

CITY/ZIP:

\qquad

TELEPHONE:

\qquad
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) If set $A=\{x \mid x$ is an integer divisible by 2 or 3$\}$ and set
$B=\left\{x \mid-2 x^{2}+21 x-10>0\right\}$, find $|A \cap B|$ (the cardinality of the intersection).
2) Find $f(-8)$ for the function

$$
f(x)=\left\{\begin{array}{rl}
2^{x}, & x>0 \\
f(x+3), & x \leq 0
\end{array} .\right.
$$

1) \qquad
2) \qquad
3) Find x in the 4×4 sudoku puzzle below. Remember that each row, column, and 2×2 corner block must have each of the digits $1,2,3$, and 4 appearing exactly once!

		2	
1			
x	4		
			3

4) Find the exact value of

$$
\tan \left[\arcsin \left(-\frac{3}{4}\right)\right] .
$$

5) Find all real solutions to the following inequality. Express your answer in interval notation.

$$
|2 x-1|-x<1
$$

6) A professor uses the function

$$
s(x)=\frac{x+10 \sqrt{x}}{2}
$$

to curve scores on an exam. What minimum raw score is needed to ensure that the curved score is 72 or higher?
7) Find the domain of the following function. Give your answer as a union of increasing intervals (in interval notation).
8) Find all real solutions to

$$
f(x)=\sqrt{\frac{x^{2}-5 x}{x^{2}-9}} .
$$

$$
\tan ^{2} \theta=\tan \theta
$$

8)
9) \qquad
10) \qquad
\qquad
11) \qquad
12) \qquad
13)

五
11) A cubic polynomial has a root of multiplicity 2 at $x=2$. The graph of the polynomial passes through the points $(1,1)$ and $(3,-3)$. Find the remaining root of the polynomial.
12) Find all real solutions to the equation

$$
9^{x}-3^{x}-8=0
$$

Express your answer as a single logarithm with base 3 .
13) A satellite is orbiting a small, spherical planetoid of radius R at a distance d above the surface. If θ is the angle formed by the tangent lines from the satellite to the planetoid, what is $\sin \theta$ when $d=R$?

13)
14)
(a) $(5 / 2, \infty)$
(b) $(3, \infty)$
(c) $(-\infty, 5 / 2)$
(d) $(-\infty, 2)$
15) Find $\sin (2 x)$ if $\sin (x)=17 \cos (x)$.
16) How many complex solutions to $z^{10}=i$ lie in the first quadrant of the Complex Plane?
17) What is the minimum value of the function

$$
f(x)=\sqrt{x^{2}-1}+2^{\sqrt{x^{2}+5 x+4}} ?
$$

18) In right triangle $\triangle A B C, A E$ is the median from $\angle A$ to its opposite leg, and $B F$ is the median from $\angle B$ to its opposite leg. Find the numerical value of

$$
\frac{m(A E)^{2}+m(B F)^{2}}{m(A B)^{2}}
$$

18) \qquad
19) \qquad

Find the exact value of

$$
x^{2}-3^{2011} x+3^{4020}=0
$$

15) \qquad
16) \qquad
17) \qquad

) \qquad

$$
\log _{3}\left(\frac{a^{3}+b^{3}}{2}\right)
$$

