LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2010 Junior Examination
(Section I)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the s Simplify all fractions and radicals. Your answer must be	
1) Express $\frac{(0.01)^3}{(0.5)^2}$ as a fraction in lowest terms.	1)
2) The average of three numbers is 21. If two of the number and 18, what is the third number?	mbers are 4 2)
3) Reduce $\frac{x^3 + 27}{x^2 - 2x - 15} \cdot \frac{2x - 10}{x^2 - 3x + 9}$ to lowest term	ns. 3)
4) If the perimeter of a square is $\frac{1}{3}$ the area of the same what is the length of the side of the square?	square, then 4)
5) Find the vertex of the parabola $y = 2x^2 + 6x + 3$.	5)
6) The sum of the real solutions to $x^2 - 2 x - 15 = 0$ (a) 0 (b) -2 (c) 2 (d) 8	0 is equal to: 6)
7) Find all real solutions to $\ln(x+1) - \ln x - 5 = 0$.	7)
8) Matt, Valerie, and Roy have a total of \$5.50 in nickel 3 times as many nickels as Valerie and 2 times as many Roy. How many nickels does Roy have?	
9) The number of zeros of $f(x) = \left(\frac{1}{2}\right)^x - \sin x$ on the	interval 9)
[0, 2π] is (a) 1 (b) 2 (c) 3 (d) 4	
10) If $ x + 2 + x + 1 > k$ for all real numbers x , the range of values for k ?	nen what is the 10)

11)	If $\log_a 10 =$	$= B^x$ and	$B^x = 2$, the	en a equals?

11) <u>a = _____</u>

12) Suppose
$$f(x) = x^2 + bx + c$$
 has exactly one real x-intercept and this x-intercept is also the x-intercept of the line $y = 3x + 4$, what is the value of b ?

12) *b* =

13) There is a square
$$\Box ABCD$$
. M and N are midpoints of \overline{BC} and \overline{CD} , respectively. A point is selected at random inside the square. What is the probability that this point lies within $\triangle MCN$?

13)____

14) If
$$f(x) = 4x^2 - kx - 8$$
 is a monotone function on [5, 8], then what is the range of k ?

15) Suppose
$$f(x) = 1 - \sqrt{x - 1}$$
, where $x \ge 1$, then $f^{-1}(x)$ is

(a)
$$(x-1)^2 + 1, x \in \mathbb{R}$$
 (b) $(x-1)^2 - 1, x \in \mathbb{R}$

(b)
$$(x-1)^2 - 1, x \in \mathbb{R}$$

(c)
$$(x-1)^2 + 1, x \le 1$$
 (d) $(x-1)^2 - 1, x \le 1$

(d)
$$(x-1)^2 - 1, x \le 1$$

16)____

17) If a complex number
$$z$$
 satisfies $|z+i|+|z-i|=2$, then the smallest value attained by $|z+i|+1$ is:

(b) 1

(c) $\sqrt{5}$

(d) 3

18) What is the value of
$$\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta}$$
 if $\tan\theta = \sqrt{2}$?

19) If
$$a^{2x} = \sqrt{2} - 1$$
, then the value of $\frac{a^{3x} + a^{-3x}}{a^x + a^{-x}}$ is:

19)

(a)
$$2\sqrt{2} - 1$$

(a) $2\sqrt{2} - 1$ (b) $2 - 2\sqrt{2}$ (c) $2\sqrt{2} + 1$ (d) $\sqrt{2} + 1$

(c)
$$2\sqrt{2} + 1$$

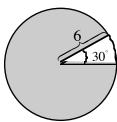
20) If x and y satisfy
$$\begin{cases} x - y \ge 0 \\ x + y \le 1 \end{cases}$$
 then what is the smallest value $y \ge -1$ attained by $2x + y$?

20)

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2010 Junior Examination (Section II)

NAME: _____ Address: ______ SCHOOL: City/ZIP:


Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) What is the midpoint of the line segment with endpoints (-6, 0)and (4, 3)?
- 2) What is the probability of flipping a fair coin 3 times and obtaining exactly 2 tails and 1 head?
- 3) If $\log_2 3 = a$ and $\log_2 5 = b$, then $\log_2 \frac{9}{5}$ can be expressed as
- 3)_____
- (a) $a^2 b$ (b) $\frac{2a}{b}$ (c) $\frac{a^2}{b}$

- 4) Given a function $f(x) = ax^4 bx^2$, if f(-1) = 1, then what is f(1)?
- 5) Find all real numbers x such that $\frac{4}{x+2} > \frac{3}{x-1}$. Express your answer using interval notation.
- 5)

6) Find the area of the **shaded** region.

7) Find all real solutions to the following system:

$$\ln xy - 2\ln y = \ln 8$$

$$\ln \frac{x}{y} + 2\ln y = \ln 2$$

8) Find all real solutions to $x^3 + 4x^2 - 8x - 32 = 0$.

- **9)** If $(x + 2)(x + k)^2 = x^3 + 16x^2 + 77x + 98$, then k equals ?
- 9) k =

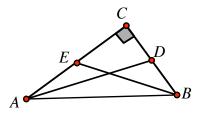
10) What is the domain of $y = \frac{\sqrt{x^2 + 2x - 8}}{x^2 - x - 12}$?

10)

- 11) Find all real solutions of $\sin^2 x + \frac{\sin x}{2} \frac{1}{2} = 0$ on $[0, 2\pi]$.
- 11)_____
- 12) What is the coefficient of x^3 in the expression $(x^2 + 1)(x 2)^7$?
- 12)_____
- 13) If a sequence $\{a_n\}_{n\geq 1}$ with $a_1=1$ has a partial sum s_n , and a point (a_n, a_{n+1}) is on the line x - y + 1 = 0, then $\frac{1}{s_1} + \frac{1}{s_2} + \ldots + \frac{1}{s}$ is equal to:
- 13)____

- (a) $\frac{n(n+1)}{2}$ (b) $\frac{2}{n(n+1)}$ (c) $\frac{2n}{n+1}$ (d) $\frac{n}{2(n+1)}$

- **14)** Find all real values x such that $2^{\log_4 x} = 64$.


- 14)_____
- **15**) Given $f(n) = \begin{cases} 1, & n = 0 \\ n \cdot f(n-1), & n \text{ a positive integer} \end{cases}$, then f(6) = ?
- **16)** If x, y > 0 and $\ln 2^x + \ln 8^y = \ln 2$, then the smallest value attained by $\frac{1}{r} + \frac{1}{3v}$ is

 - (a) 2 (b) $2\sqrt{2}$ (c) 4 (d) $\sqrt{3}$
- **17**) Define $P = \{x \mid x^2 4x 5 < 0\}$ and $Q = \{x \mid |x| a \ge 0\}$. **17**)_____ If $P \cap Q = \emptyset$, then *a* satisfies
- (a) a > 2 (b) $a \ge 5$ (c) -1 < a < 5
- **18**) If $|x| \le \frac{\pi}{4}$, then what is the minimum value of $f(x) = \cos^2 x + \sin x ?$

- 18)_____
- **19)** If a straight line x + y = 1 does **not** intersect the circle $x^2 + y^2 - 2ay = 0$, where a > 0, then a is a member of which of the following intervals?
- 19)

16)_

- (a) $(0, \sqrt{2} 1)$ (b) $(\sqrt{2} 1, \sqrt{2} + 1)$ (c) $(-\sqrt{2} 1, \sqrt{2} 1)$ (d) $(0, \sqrt{2} + 1)$
- **20**) In triangle ABC given below, $\angle ACB = 90^{\circ}$, D and E are midpoints of \overline{BC} and \overline{AC} respectively. If $\overline{BE} = 4$ and $\overline{AD} = 7$, then what is \overline{AB} ?
- 20)

LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2010 Senior Examination
(Section I)

NA	ME:			Address:	
SCI	HOOL:				
					Oo not use approximations. we credit for a problem.
1)	-		in slope-intercept 3 and passes thro		1)
2)	$ 3-\pi =$				2)
ĺ	(a) $3 - \pi$	(b) $\pi - 3$	(c) $-3 - \pi$	(d) $3 + \pi$,—————————————————————————————————————
3)	1.1		be doubled. This creased by a factor	s means the radius r of	3)
	(a) 2	(b) $\frac{1}{2}$	(c) $\sqrt{2}$	(d) $\frac{\sqrt{2}}{2}$	
4)	, ,	. =	the Cartesian pland (b, a) is 5 unit	e such that $a \neq b$. ts, then what	4)
5)			at the slope of the $(-2, 3)$	1	5)
6)			is perpendicular t		6)_ <i>a</i> =
7)	If a set $A = \begin{cases} x \\ \text{what is the range} \end{cases}$		2 = 0 has at most	st one element, then	7)
8)	Find all real solu	utions to $e^{\log_8 x}$ =	= 50 .		8)
9)	If $9a^2 + ka + \frac{1}{5}$	1 is a complete	square, then k eq	ıuals :	9)
	(a) 2	(b) -2	$(\mathbf{c}) \pm 2$	$(\mathbf{d}) \pm 1$	
10)	What is the remains by $x + 5$?	ainder when x^4	$+20x^3-x+5$	is divided	10)

(OVER)

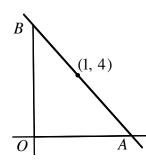
- 11) In the expression $\left(\frac{1}{x} + x^2\right)^6$, what is the coefficient of x^3 ?
- 11)_____
- 12) Given a function $f(x) = x^3 + \sin x + 1$, $x \in \mathbb{R}$. If f(a) = 2, then what is f(-a)?
- 12)_____

- **(a)** 3
- **(b)** 0
- **(c)** -1

- **(d)** -2
- **13**) If $f(\log_2 x) = 2^x$, then f(3) equals
 - (a) 128
- **(b)** 256
- **(c)** 512
- (**d**) 8

- 13)_____
- **14)** Define a function $f(x) = \begin{cases} x + 2, & x \le -1 \\ x^2, & 1 < x < 2 \end{cases}$. If f(x) = 3, then what is the value of x?
- 14)_____

15) Find all real solutions to $\cos(\arcsin x) = x + 1$.


- 15)_____
- **16)** If $(x^2 + y^2)(x^2 + y^2 2) + 1 = 0$, then what is the value of $x^2 + y^2$?
- 16)_____
- 17) What is the greatest common divisor of 2016 and 384?
- 17)_____

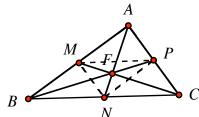
18) If $a = \sqrt{2} - 2$, what is the value of $\frac{4}{a^2 - 4} + \frac{2}{a + 2} - \frac{1}{a - 2}$?

18)_____

19) What is the minimum value attained by $f(x) = \log_2 \left(x + \frac{1}{x - 1} + 5 \right) ?$

- 19)_____
- **20)** The straight line y = kx + b passes through a point (1, 4), intersects the x-axis at A, and the y-axis at B, as shown in the figure below. O is the origin. If $\triangle AOB$ has minimal area, then
- 20)_____

- (a) k = -4, b = 8
- **(b)** k = -4, b = 4
- (c) k = -2, b = 4
- (d) k = -2, b = 2


LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2010 Senior Examination
(Section II)

	(beetion II)			
NAME:	Address:			
SCHOOL:	City/ZIP:			
	Telephone:			
	wer in the space provided. Do not use approximations. er must be complete to receive credit for a problem.			
1) If $ab = 2$ and $c = 18a$, then what is bc ?	1)			
2) If the sum of 2 consecutive integers is 113, two integers?	, what is the larger of the 2)			
3) If the area of an equilateral triangle is 16 \(\sqrt{4} \) what is the length of a side of the triangle?				
4) If a substance loses half of its mass every 4 100g sample of the substance will be left a				
5) If $f(x) = \begin{cases} e^x, & x \le 0 \\ \ln x, & x > 0 \end{cases}$, what is $f\left(f\left(\frac{1}{2}\right)\right)$	5)			
6) Express $0.\overline{123}$ as a common fraction in lo	owest terms. 6)			
7) Write $\frac{2-4i}{3+7i}$ in the form $a+bi$.	7)			
 8) If y = kx and k ≠ 0, then (a) y is directly proportional to x. (b) y is inversely proportional to x (c) there is not enough information proving y is directly or inversely proportion 				
9) During a sale, a store reduces the price of a percentage must the sale price be increased original price of the item?				
10) Which of the following functions is equivariant (a) $y = (\sqrt{x})^2$ (b) $y = \sqrt[3]{x^3}$	alent to $y = x$? 10)			

11) Find the domain of $f(x) = \frac{3x}{\sqrt{1-x}} + \ln(3x+1)$.

- 11)
- 12) How many subsets are there for the set $A = \{1, 3, 4, 5\}$?
- 12)
- **13)** If $f(x) = (m-1)x^2 + (m-2)x + m^2 7m + 12$ is even, then the value of m is
- 13)
- (c) 3 (d) 4 **(a)** 1 **(b)** 2
- **14)** If the real solutions for x in the equation $\frac{m}{x+2} = 1$ are negative, then what is the range of m?
- **15**) If M, N, and P are midpoints of $\triangle ABC$, \overline{BF} equals:

- **16)** Find all real x such that $\left(\frac{1}{3}\right)^{x^2 8} > 3^{-2x}$.

- **16**)
- 17) Five different letters are chosen from E Q U A T I O N and are arranged in a sequence. How many arrangements can be made with Q and U next to each other?
- 17)____

18) If $\tan \theta = \sqrt{2}$, then what is the value of $\sin^2 \theta - \sin \theta \cos \theta + 2\cos^2 \theta$?

- 18)
- 19) If $\sin\left(x + \frac{\pi}{4}\right) = -\frac{5}{13}$, then the value of $\sin 2x$ is equal to :
- 19)____

- (a)
- **(b)**
- (c) $\frac{-120}{169}$
- (d) $\frac{-119}{169}$
- **20)** If a + b = 2 where a and b are real, what is the smallest value attained by $3^a + 3^b$?
- 20)