LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2009 Junior Examination
(Section I)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.	
1) Suppose that a square has sides of length <i>s</i> units. If <i>s</i> is increased by 1.5 units, express the increase, <i>I</i> , in the square in terms of <i>s</i> .	
2) What is the area of the triangle with vertices (-4, -2), (6, -2)?	(-4, 8), and 2) 50 units
3) What is the sum of all the prime numbers between 1 inclusive?	and 37 3) 197
4) The harmonic mean of two numbers is the reciprocal average of the reciprocals of the two numbers. Find harmonic mean of 7 and 9.	8
5) There are 14 juniors and 23 seniors in the service cluclub is to send 4 representatives to the state conferent the members of the club decide to send 2 juniors and then how many groupings are possible?	ce. If
6) If $x \log_3 2 = 1$, then $2^x = $	6) 3
7) Find all real numbers x such that the distance between and $(x, 2)$ is equal to 5 units.	en $(3,4)$ 7) $3 \pm \sqrt{21}$
8) If the straight line $x + my + 1 = 0$ is perpendicular straight line $m^2x - 2y - 1 = 0$, then m is	
(a) $\sqrt[3]{2}$ (b) 0 or 2 (c) 2 (d) 0 or 3 9) Express the complex number $\left(\frac{2i}{1+i}\right)^2$ in the form where a and b are real numbers.	
10) Re-express $\frac{10}{\sqrt[3]{5}}$ by rationalizing the denominator.	10) $2\sqrt[3]{25}$

11) If
$$f(x) = x^2 - 2ax + 2$$
 and $f(x) \ge a$ when $x \in [-1, \infty)$, then a satisfies which of the following?

(a)
$$-1 < a < 1$$

(b)
$$-2 \le a \le 1$$

(c)
$$-3 \le a \le -2$$

(d)
$$-3 \le a \le 1$$

12) Find all real values x such that
$$9^x - 6 \cdot 3^x - 7 = 0$$
.

12)
$$\log_3 7$$

11) (d)

13) Albert had a bag of apples. He gave
$$\frac{1}{4}$$
 of the apples to Sara.

He then gave $\frac{1}{3}$ of what was left to Gerald. After giving $\frac{1}{2}$ of the remaining apples to his sister and eating one apple, Albert had 12 apples left. How many apples were originally in the bag?

14) What is the range of
$$f(x) = \frac{2}{14 + e^x} + 3$$
? Express your answer in interval notation.

14)
$$(3, \frac{22}{7})$$
 or $(3, 3\frac{1}{7})$

15) If
$$\sin\theta + \cos\theta = \frac{1}{5}$$
, then $\sin 2\theta =$ ____.

15)
$$-\frac{24}{25}$$

16) The constant term in the expression
$$\left(\sqrt{x} - \frac{1}{x}\right)^9$$
 is

- (c) -84 (d) 84

17) If
$$a_n = \frac{1}{(n+1)(n+2)}$$
, then the partial sum s_n of the sequence $\{a_n\}_{n \ge 1}$ is

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{2} - \frac{1}{n+2}$$

(c)
$$\frac{1}{2n+3}$$

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{2} - \frac{1}{n+2}$ (c) $\frac{1}{2n+3}$ (d) $\frac{2n+3}{(n+1)(n+2)}$

18) Let
$$A = \{x \mid 0 < x < 9, x \text{ is a prime}\}$$
 and $B = \{x \mid 0 < x < 9, x \in \mathbb{N}\}$, then the number of sets S satisfying $A \subset S \subseteq B$ is ______.

19) If
$$a = \frac{1}{2 - \sqrt{5}}$$
, $b = \frac{1}{2 + \sqrt{5}}$ then $a + b + ab$ is equal to

(a)
$$1 + 2\sqrt{5}$$
 (b) $1 - 2\sqrt{5}$ (c) -5

(b)
$$1 - 2\sqrt{5}$$

20) Find the domain of
$$\sqrt{\frac{x^2 + 4x + 3}{x - 5}}$$
.

20)
$$[-3, -1] \cup (5, \infty)$$

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2009 Junior Examination (Section II)

NAME: ______ Address: ______

SCHOOL: _____ City/ZIP: _____

Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) Find the area of the circle that passes through (6, 4) and has as its center (2, 3).
- **1**) 17π

2) Express $i^{27} + 5i + (7 + 2i)(5 - 2i)$ as a real number.

- **2**) 39
- 3) If the length of the side of a square increases by 50%, then the area of the square increases by
- **3**) (d)

- (a) 100% (b)
 - **(b)** 50% **(c)** 30
 - **(c)** 300% **(d)** 125%
- 4) Find all real values x such that $3^{\frac{6}{\log_7 x}} = \frac{1}{27}$.

- **4**) $\frac{1}{49}$
- **5)** Three digits are chosen from 1, 2, 3, 4, 5 at one time. What is the probability that two odd digits remain?
- **5**) $\frac{3}{10}$

6) If f(x) satisfies $f(x + 2) = \frac{13}{f(x)}$ and f(1) = 2, then f(99) is equal to _____.

6) $\frac{13}{2}$

7) How many 3-element subsets does the set {1, 2, 3, 4, 5, 6, 7} have?

7) 35

8) Find all solutions to $\tan^4 2x - 9 = 0$ in $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

- 8) $-\frac{\pi}{6}, \frac{\pi}{6}, -\frac{\pi}{3}, \frac{\pi}{3}$
- 9) Find all real solutions to the equation $\frac{x^2 2}{x} + \frac{2x}{x^2 2} = 3$.
- 9) 2, -1, 1 $\pm \sqrt{3}$

10) If $x^2 + mx - 15 = (x + 3)(x + n)$, then n = **(a)** -5 **(b)** 5 **(c)** -2 **(d)** 2

10) (a)

11) Find all real values of k such that x = -4 is a root of

$$P(x) = kx^2 + kx + 3.$$

12) The equation $\frac{x^2}{25} + \frac{y^2}{9} = 1$ represents

12) (b)

11) $-\frac{1}{4}$

- (a) a circle with radius 5.
- **(b)** an ellipse with eccentricity $\frac{4}{5}$.
- (c) a circle with radius 3.
- (d) an ellipse with eccentricity $\frac{3}{5}$.
- 13) Convert $(\sqrt{2}, -\frac{\pi}{4})$ from polar to rectangular coordinates.

$$y = \sqrt{\log_{\frac{2}{5}} x - 1}$$

14) Find the domain of

14) $0 < x \le \frac{2}{5}$

13) (1,–1)

15) 2401

17) (c)

- **15**) Find all real solutions to the equation $\sqrt{x} 5\sqrt{\sqrt{x}} 14 = 0$.
- **16)** Solve for x: $\frac{3}{4} \le \frac{1}{x-3} < 5$.

- **16**) $\frac{16}{5} < x \le \frac{13}{3}$
- 17) A regular polygon having interior angles whose sum is 720° is called
 - (a) a quadrilateral.
- **(b)** an octagon.
- (c) a hexagon.

- (d) a heptagon.
- (e) none of the above.
- **18**) If $f(x) = \begin{cases} 2e^{x-1}, & x < 2 \\ \log_3(x^2 1), & x \ge 2 \end{cases}$, then $f(f(2)) = \underline{\qquad}$.
- **19)** Let $f(x) = ax^3 + bx + 7$. If f(5) = 3, then what is f(-5)?
- **19**) 11
- **20)** If m and n satisfy $m + 4\sqrt{mn} 2\sqrt{m} 4\sqrt{n} + 4n = 3$,
- **20**) $-\frac{1}{401}$

then $\frac{\sqrt{m} + 2\sqrt{n} - 8}{\sqrt{m} + 2\sqrt{n} + 2002}$ is equal to _____.

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2009 Senior Examination (Section I)

Address: ______ NAME: _____ City/ZIP: _____ Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) What is the largest integer less than 2000 that is divisible by 7?
- **1**) 1995
- 2) Suppose $A = \sqrt{BC + BD}$. Solve for B in terms of A, C, and D.
- $2) \frac{A^2}{C+D}$
- 3) A square and a circle have equal areas. Express the radius of the circle, r, in terms of the side of the square, s.
- 3) $\frac{5}{\sqrt{\pi}}$
- 4) The sum of three consecutive odd numbers is 15. What is the product of these numbers?
- 5) Compute $\lim_{x \to -4} \frac{5x + 20}{x^2 16}$.

4) 105

6) Find all real solutions to $e^x - 8e^{-x} + 2 = 0$.

- **6**) ln 2
- 7) Let $f(x) = \frac{1+x}{1-x}$, $f_1(x) = f(x)$, and $f_{n+1}(x) = f(f_n(x))$, then $f_{2006}(x) =$
- **7**) (b)

(a) x (b) $-\frac{1}{x}$ (c) $\frac{1+x}{1-x}$ (d) $\frac{x-1}{x+1}$

- 8) Find all real numbers x such that $x^2 < 2x + 3$ and $\log_2(x 1) < 1$.
- **8**) 1 < *x* < 3

9) Express $0.1\overline{245}$ as a common fraction in lowest terms.

- 10) A rectangular sheet of metal is 20 inches wide. The length of a diagonal between opposite corners is 5 inches more than the length of the whole sheet. What is the length of the sheet of metal?
- **10**) 37.5 inches

- 11) How many ways are there to put 14 indistinguishable balls into 3 distinguishable urns if each urn is to contain at least one ball?
- 12) The number of real solutions to the system of equations $\begin{cases}
 |x| + y = 12 \\
 x + |y| = 6
 \end{cases}$ (a) 1 (b) 2 (c) 3 (d) 4
- **13)** The remainder of $(x^{100} + 75x 75B) \div (x B)$ written in terms of B =______.
- **14)** f(x) satisfies $f(x+2) = \frac{1}{f(x)}$. If f(1) = -5, then what is f(-f(5))?
- **15**) \overline{CD} is the diameter of a semicircle. A is a point on the semicircle, and \overline{AB} is perpendicular to \overline{CD} . If $\overline{AB} = 20$ and $\overline{BD} = 10$, then $\overline{BC} = A$

- 16) Three line segments are randomly selected from five line segments with lengths 1, 3, 5, 7, and 9 (without replacement). What is the probability of forming a triangle using the three chosen segments?
- 17) If $\sin \alpha \cos \alpha = -\frac{\sqrt{5}}{2}$, then $\tan \alpha + \frac{1}{\tan \alpha} =$ ____.
- **18)** Find the minimum value attained by y if $y = \sin^2 x 3\sin x + 1$. **18)** -11
- **19**) If $a \ge 0$, $b \ge 0$, and a + b = 4, then
 (a) $\frac{1}{ab} \ge \frac{1}{2}$ (b) $\frac{1}{a} + \frac{1}{b} \ge 1$
 - (c) $\sqrt{ab} \ge 2$ (d) $\frac{1}{a^2 + b^2} \ge \frac{1}{4}$
- **20)** If $x^2 + y^2 = 1$, then what is the largest value of 3x + 4y?

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2009 Senior Examination (Section II)

NAME: ______ Address: ______

SCHOOL: _____ City/ZIP: ______

Telephone: _____

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

- 1) What is the greatest common divisor of 34,650 and 2,574?
- **1**) 198
- 2) What is the area of a square that has a diagonal length of $8\sqrt{2}$ units? 2) 64
 - ,
- **3)** Find the equation of the line, in slope-intercept form, that is the perpendicular bisector of the line segment with endpoints (3, 7) and (-1, 5).
- 3) -2x + 8
- 4) A rectangle is twice as long as it is wide. The area of the rectangle is 72 square units. What is the perimeter of the rectangle?
- **4**) 36

5) Find the area of the sector shown at the right.

5) $\frac{15\pi}{2}$

6) Find the domain of the function $\sqrt{\log_{0.5}(3x-2)}$.

- **6**) $\frac{2}{3} < x \le 1$
- 7) What is the maximum value of the function $f(x) = 3 8x x^2$?
- **7**) 19
- 8) The inverse function of $f(x) = \sqrt{1 + 4x x^2}$, $x \le 2$ is
- **8**) (c)

- (a) $f(x) = 2 + \sqrt{5 x^2}$, $0 \le x \le \sqrt{5}$
- **(b)** $f(x) = 2 + \sqrt{5 x^2}, -\sqrt{5} \le x \le 0$
- (c) $f(x) = 2 \sqrt{5 x^2}$, $0 \le x \le \sqrt{5}$
- (d) $f(x) = 2 \sqrt{5 x^2}, -\sqrt{5} \le x \le 0$
- 9) Find all real values of x such that $5^x = 125^{4x+1}$.

- **9**) $-\frac{3}{11}$
- **10**) What is the sum of the integers 57 through 88 inclusive?
- **10**) 2320

11) Find the length of side *a* in the triangle below.

- 12) Bob has \$1.55 in change consisting of quarters, dimes, and nickels. If he has 2 more dimes than quarters, and twice as many nickels as quarters, how many nickels does Bob have?

12) 6

11) $50\sqrt{6}$

- 13) If the equation $(m-2)x^2 2x + 1 = 0$ has a real solution, then
 - (a) m < 3

- **(b)** $m \le 3$
- (c) m < 3 and $m \ne 2$
- (d) $m \le 3$ and $m \ne 2$
- **14)** Find all real values x such that $e^{2x} 5e^x 24 = 0$.

14) ln 8

15) 15

18) (b)

13) (b)

- **15)** If f(x) = 1 2x, $g[f(x)] = \frac{1 x^2}{x^2}$, $x \ne 0$, what is $g(\frac{1}{2})$?
- **16)** If the sum of all the coefficients in the expansion of $\left(x + \frac{1}{r}\right)^n$ is **16)** 20 64, then what is the value of the constant term?
- 17) If the function $f(x) = \log_a \left(\frac{1 mx}{x 1} \right)$, $(a > 0, a \ne 1, m \ne 1)$ is **17**) -1 an odd function, then what is the value of m?
- **18)** If a and b are real numbers, and $a^2 + b^2 = 2$, then
 - (a) a + b < 2 (b) $a + b \le 2$
 - (c) a + b > 2
- (d) $a + b \ge 2$
- 19) If $\begin{cases} 2x + 3y \le 6 \\ x y \ge 0 \\ y \ge 0 \end{cases}$, then what is the largest value of 3x + y? **19**) 9
- **20**) The even function f(x) is a monotone function on [0, a], a > 0. **20**) 2 If $f(0) \cdot f(a) < 0$, then what is the number of roots of f(x) on [-a, a]?