
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 1993 Junior Examination
 (Section I)

Directions: Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for the problem.

1) Solve for $x: 7(x+3)=4(x+5)-47$
2) Determine the y-intercept of the line which passes through $(1,2)$ and has slope 4 .
3) Find $\arcsin \left(\frac{5 \pi}{4}\right)$.
4) State the amplitude and period of the function $f(x)=2 \cos \frac{\pi x}{2}$.
5) In the figure shown, both the circle centered at P and the circle centered at Q have a radius of 1 . What is the perimeter of the shaded region?

6) If $\log 2=a$ and $\log 3=b$, express $\log \frac{8}{9}$ in terms of a and b.
7) On the interval $[0, \pi]$, for what values of x is $\sin x+\cos x>0$?
8) An automobile tire has diameter of 30 in . How many revolutions per minute will the wheel make when the automobile maintains a speed of $30 \mathrm{mi} / \mathrm{hr}$? (Recall that there are 5280 feet per mile.)
9) Determine the equation of the parabola which has vertex ($3,-4$) and a horizontal axis of symmetry and which passes through the point $(1,-5)$.
10) Find all values of x satisfying $|3 x+2|=5$.
11) Express .000342 as the product of an integer power of 10 and a number between 1 and 10.
12) Give the area of the region enclosed by the figure shown, assuming that the distance between adjacent dots in a row or column is one unit.

13) Determine the value(s) of K for which the line $x=\mathrm{K}$ is tangent to the circle

$$
x^{2}+y^{2}-4 x+2 y+1=0 .
$$

14) Consider the points $A=(1,1)$ and $B=(4,7)$ in the plane. Determine x such that the point $C=(x, 1)$ lies in the first quadrant and $A B=A C$.
15) State the domain of the function $f(x)=\frac{1}{\sqrt{3 x+2}}$.
16) Solve for $x:\left(\frac{1}{4}\right)^{x}=32$.
17) Suppose that 2 coins are tossed. Find the probability of obtaining at least one head.
18) Suppose f is a function satisfying $f(x) f(y)-f(x y)=x+y$ for all real numbers x and y. Determine the formula for $f(t)$.
19) Suppose $\csc \theta=\frac{17}{8}$ and $\frac{\pi}{2}<\theta<\pi$. What is the value of $\cos \theta$?
20) Starting from point A, a boat sails due south for 6 miles, the due east for 5 miles, and then due south for 4 miles. How far is the boat from A ?

 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 1993 Junior Examination

(Section II)

1) Determine all values of x satisfying $-5 x \leq 30$.
2) State the value of $\tan 315^{\circ}$.
3) The daily payroll for a work crew is directly proportional to the number of workers, and a crew of 12 workers earns a payroll of $\$ 540$. What is the daily payroll for a crew of 15 workers?
4) Suppose $f(x)=x^{2}+3 x-4$. Find $f(2 a+3)$, and simplify your answer.
5) Solve for $x: \log _{8}(x-6)+\log _{8}(x+6)=2$.
6) In the figure shown, $A B D$ is a right isoceles triangle. Find x.

7) In a regular polygon, the measure of each interior angle is 162°. How many sides does the polygon have?
8) If the angle of elevation to the top of a tower from a distance 200 feet away from ground level is 60°, find the height of the tower.
9) A student's median score on three tests was 90 . Her mean score was 92 and her range was 8 . What were her high and low scores?
10) If, for all $n, 2^{n}+2^{n}+2^{n}+2^{n}=x\left(2^{n+1}\right)$, then what is the value of x ?
11) Determine all values of x in the interval $[0,2 \pi)$ such that $2 \sin ^{2} x+\sin x=1$.
12) The sum of two consecutive integers is 1 less than 3 times the smaller. Find the two integers.
13) In the figure shown, $\overline{A B} \| \overline{C D}$.

Find x and y.

14) Consider the lines with equations $5 x-2 y=10$ and $x-y=-1$. Find the coordinates of the point where these lines intersect.
15) Solve for B : $A=\frac{1}{2} h(b+B)$
16) In the figure shown, a small square is inscribed inside a circle, which is itself inscribed inside a large square. Find the ratio of the area of the large square to the area of the small square.

17) Suppose $f(x)=\frac{a x+b}{c x+d}$ where $b c-a d \neq 0$. Find the formula for the inverse function $f^{-1}(x)$.
18) Find a and b such that $(2+i)(2-i)(a+b i)=10-4 i$.
19) Find the polynomial p such that $(x-2) p(x)=2 x^{3}-x^{2}-5 x-2$ for all x.
20) A particle travels along a curve C in the $x y$-plane. At time t, the location of the particle is given by $x(t)=\cos ^{2} t$ and $y(t)=2 \sin$. Find an equation of C in terms of x and y alone.

