
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 1996 Junior Examination

(Section I)

Directions: Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for the problem.

1) What is the slope of the line with equation $2 x-5 y=3$?
2) Express the fraction $\frac{11}{25}$ as a percent.
3) Solve for $t: q=r(s+t)$
4) Determine x so that the point $(x, 4)$ is equidistant from $(5,-2)$ and $(3,4)$.
5) What is the minimum product of two numbers whose difference is 4 ?
6) The circles centered at P and Q have radii 6 and 2, respectively, and are tangent to each other. Find the length of their common external tangent $\overline{A B}$.

7) Determine all real values of x for which $|x-3|=-(x-3)$.
8) State the domain of the function $f(x)=\sqrt{9-x^{2}}$.
9) A closed rectangular box of volume 10 cubic feet has a square base with side length x. If S denotes the total surface area of the box, express S as a function of x.
10) Suppose $f(x)= \begin{cases}2 x+1, & \text { if } x \leq 0 ; \\ x^{2}+1, & \text { if } x>0 .\end{cases}$

Which of the following statements are true?
a) There is no value of x such that $f(x)=17$.
b) There is exactly one value of x such that $f(x)=17$.
c) There are exactly two value of x such that $f(x)=17$.
d) There are exactly three value of x such that $f(x)=17$.
11) If $\log _{b} 2=0.3$, then determine the value of $\log _{b}\left(\frac{b^{5}}{2}\right)$.
12) In the given diagram, let x denote the length of segment $O P$ and A the area of rectangle $P Q R S$. $\operatorname{Express} A$ as a function of x.
13) The number $\cos 460^{\circ}$ is:
a) positive

b) negative
c) zero
$14)$ Find the equation of the circle centeed at $(2,3)$ and tangent to the line $x=5$.
15) Solve for $x: 3+3^{x}=12$
16) The current of a river is 2 mph . A boat travels to a point 8 miles upstream and back again in 3 hours. What is the speed of the boat in still water?
17) Evaluate: $\sin \frac{\pi}{3} \cos \pi+\cos \frac{\pi}{3} \sin \pi$
18) A ball is dropped from a height of 8 feet. On each bounce it rises to half its previous height. When the ball hits the ground for the seventh time, how far has it traveled?
19) Suppose A_{1} denotes the area of a square inscribed in a semicircle and A_{2} denotes the area of a square inscribed in the entire circle. Determine the ratio of A_{1} to A_{2}.
20) Among people who have a certain disease, the mortality rate is 30% for those who are not treated and the mortality rate is 5% for those treated. Suppose that among the people who have the disease, 80% have been treated. If a person is chosen randomly from those who have the disease, what is the probability that he will survive the disease?

 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 1996 Junior Examination

(Section II)

1) Solve for $x: \frac{5}{16} x+\frac{3}{8} x=2+\frac{1}{4} x$
2) If the degree measure of an angle θ is 560°, what is the radian measure of θ ?
3) Simplify: $\sec \left(\operatorname{Arccos} \frac{1}{3}\right)$
4) If $f(x)=\frac{x-4}{x+4}$, find $f(f(x))$ and simplify.
5) How much pure alcohol must be added to 7 liters of a 10% alcohol to obtain a mixture that is 30% alcohol?
6) Find all value of x which satisfy the inequality $33-12 x<4 x+97$.
7) Suppose the parabola $(y+1)^{2}=k x+4$ passes through the point $(-6,3)$. What is the value of k ?
8) Among the honor students ar a certain high school, there are 20 students taking physics or chemistry. If 7 of these students are taking physics, and 3 are taking both chemistry and physics, how many are taking chemistry?
9) The given triangle has side lengths of 12,12 , and 8 . Find the radius of the circle inscribed in the triangle.

10) If $f(x)=\sqrt{2 x+3}$, find a formula for the inverse function $f^{-1}(x)$.
11) Find the y-intercept of the perpendicular bisector of the line segment which joins the points $(2,1)$ and $(-1,5)$.
12) The side of a hill makes a 30° angle with the horizontal. If a person climbs 500 feet up the hillside, how far has she risen vertically?
13) Assuming that $P Q R S$ is a parallelogram, determine the values of x and y.

14) From an ordinary deck of 52 playing cards, 2 cards are drawn without replacement. What is the probability that they are both red?
15) Find all ordered pairs (x, y) satisfying the following system of equations:

$$
\left\{\begin{aligned}
x y & =8 \\
3 x+2 y & =-16
\end{aligned}\right.
$$

16) When s , is added to both the numerator and the denominator of a fraction $\frac{p}{q}$, the resulting fraction is $\frac{r}{s}$. Therefore, x equals
a) $\frac{1}{r-s}$
b) $\frac{p s-q r}{r-s}$
c) $\frac{p s-q r}{r+s}$
d) $\frac{q r-p s}{r-s}$
e) $\frac{q r-p s}{r+s}$
17) Solve for $x: 8^{x}=4^{x^{2}-1}$
18) If $b>1$, then the function $f(x)=-\log _{\mathrm{b}} x$ could be represented by which graph below?
(a)
(b)
(c)
(d)

19) The medians of a right triangle, drawn from the vertices of the acute angles, are 5 and $\sqrt{40}$. Find the length of the hypotenuse.
20) For each positive integer n, let $S_{n}=1-2+3-4+\ldots+(-1)^{n-1} n$. Find the value of S_{17} $+S_{33}+S_{50}$.
