
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 1998 Junior Examination

(Section I)

Directions: Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for the problem.

1) Find all real numbers x such that $\left|\frac{x-5}{10}\right| \leq \frac{1}{5}$.
2) Express the infinite, repeating decimal $0 . \overline{135}=0.135135135 \ldots$ as a ratio of integers.
3) Find the center and radius of the circle whose equation is given as $3 x^{2}+3 y^{2}+12 x+12=18 y$.
4)A student has test grades of 64 and 78 . What grade must she get on a third test in order to have an average of 80 ?
4) Arrange the following numbers from smallest to largest.

$$
20^{10}, 20!/ 10!, 10^{20}
$$

6) In the triangle shown, $m(\angle A B C)=m(\angle D B C)$. If $\overline{A B}=16$, $\overline{B D}=20$, and $\overline{C D}=10$, determine $\overline{A C}$.

7) Find two positive real numbers x and y whose product is $\frac{1}{2}$ and the sum of their squares is 1 .
8) If $v \neq 0$, then simplify: $\left(\frac{2 u^{-2}}{v^{3}}\right)^{-1}\left(\frac{4 u^{-1}}{v^{2}}\right)^{3}$
9) Find all real numbers x such that $3^{x^{2}-15}=9^{x}$.
10) How many ways are there to place 10 identical balls into 3 distinct urns labeled A, B, and C ?
11) Find the equation of the line perpendicular to the line $y=-1.5 x+15$ which passes through the point $(1,-2)$.
12) In the diagram, the shaded region is a sector of $A B C$ of a circle cut off by chord $\overline{A B}$. Express the area of the shaded region in terms of the radius r and the central angle θ.

13) What is the domain and range of $f(x)=\log _{10} \sqrt{x^{2}-1}$?
14) The value of $\tan 300^{\circ}$ is the same as
a) $\tan 60^{\circ}$
b) $-\tan 240^{\circ}$
c) $-\tan \left(-60^{\circ}\right)$
d) $\cot 30^{\circ}$
e) $\tan 240^{\circ}$
15) Solve for $x: 1-\frac{3}{x}=\frac{40}{x^{2}}$
16) Find the formula for $f^{-1}(x)$ if $f(x)=\frac{3}{4} x-2$.
17) What is $\cos 2 x$ if $\sin x=\frac{5}{13}\left(0<x<\frac{\pi}{2}\right)$?
18) A pharmacist has two solutions, the first containing 15% aspirin and the second 25% aspirin. How many ounces of each should be used to obtain 10 ounces of solution containing 20\% aspirin?
19) Determine all real numbers b such that the equation $2 x^{3}+b x+3=0$ has exactly one solution.
20) At a point on the ground 75 feet from the base of a flagpole, the angle of elevation of the top of the flagpole is 65°. Assuming $\sin 65^{\circ}=.91$, and $\cos 65^{\circ}$, find the height of the flagpole.
21) Find the equation of the line which passes through the point $(1,-3)$ and is parallel to the line $4 x-2 y-7=0$.
22) If the degree measure of an angle θ is 770°, what is the radian measure of θ ?
23) Express in lowest terms: $\left(\frac{1}{x-y}\right)\left(\frac{y}{x}-\frac{x}{y}\right)$
24) Find three consecutive integers whose sum is 762 .
25) A radiator contains 10 quarts of fluid, 30% of which is antifreeze. How much fluid should be drained with pure antifreeze in order that the new mixture will contain 40% antifreeze?
26) Find all values of x which satisfy the inequality

$$
\frac{2 x-5}{x+6} \leq 1
$$

7) Rewrite the equation $y=5 x^{2}-30 x+52$ in the form $y=a(x-h)^{2}+k$, where a, h, and k are real numbers.
8) Find the domain and range of $f(x)=\sqrt{x-7}$.
9) If a square is inscribed in a circle of radius r as shown, then find the area of the shaded region.

10) If $f(x)=\frac{1}{7} x+3$, find a formula for the inverse function $f^{-1}(x)$.
11) Find $\csc \left(\operatorname{Arcsin}\left(\frac{1}{16}\right)\right)$.
12) Find all real number solutions to the equation

$$
\left|x^{2}+4 x-3\right|=2
$$

13) In the figure shown, $\overline{D E} \| \overline{B C}, m(\overline{A D})=3, m(\overline{B D})=2$, and $m(\overline{D E})=4$. Find $m(\overline{B C})$.

14) Suppose that a bag contains three coins: a penny, a nickel, and a dime. Two coins will be drawn, without replacement, one at a time. What is the probability that the first coin will be a penny and the second coin will be a dime?
15) Solve for $c: \frac{1}{c^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
16) A ferris wheel makes 17 revolutions every 3 minutes. Then the angular speed of the ferris wheel, measured in radians per minute is
a) $\frac{17 \pi}{3}$
b) $\frac{34}{3}$
c) $\frac{34 \pi}{3}$
d) $\frac{3 \pi}{34}$
e) $\frac{17}{3 \pi}$
17) Find a polynomial $p(x)$ with real coefficients having degree 4 whose only roots are 4,3 $+i$, and $3-i$.
18) If $A_{n}=2^{n}-2^{n-1}$, find $A_{1}+A_{2}+A_{3}+\ldots+A_{10}$.
19) A company's profit is given (in thousands of dollars) by $P(x)=-50+25 x-x^{2}$, where x is the number of units sold. What is the maximum possible profit?
20) If $\frac{3 \pi}{2}<t<2 \pi$ and $\cos ^{2} t=\frac{16}{25}$, find $\csc t$.
