LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2002 Junior Examination (Section I)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the Simplify all fractions and radicals. Your answer must be	space provided. Do not use approximations. complete to receive credit for a problem.
1) Find the equation, in slope-intercept form, of the line passes through the point (1, 2) and is perpendiculate line with equation $5x = 10y + 3$.	e which 1) lar to the
2) How many distinct 7-letter strings can be generated letters in the word <i>ALABAMA</i> ?	1 from the 2)
3) Assume a daughter's, mother's and grandmother's age is 130 years. If the daughter age is one third t mother, and the grandmother's age is twice the m how old is the daughter?	combined 3) <u>years</u> hat of the other's age,
4) Find a number <i>t</i> , such that the line passing through and $(8, -4t + 1)$ has a slope of 3.	(<i>t</i> +2,4) 4)
5) If 2 gears, each of radius 5 in., are used in a chain d a chain of length 60 in., what is the distance betwee the gears?	rive system with 5) <u>in.</u> een the centers of
6) The graph of the equation $xy^2 - x^3 - 7y^2 + 7x^2 = 0$ A) a parabola B) a hyperbola C) 3 distinct lines	is that of 6)
7) Find the length of the line segment connecting the p (5, 3) and (10, -9).	points 7)
8) How many real roots does $p(x) = x^6 - 6x^3 + x^2 - possess?$	2 <i>x</i> + 11 8)
9) Find all the real values of x such that $5x^2 \le 100x$	- 500, 9)
10) What is the smallest number of marbles that can be equally among 6 boys, then among 8 boys, then at 10 boys, and finally among 12 boys?	divided 10) mong

11) Find A, B, and C such that

$$\frac{5x-3}{(x-1)(x-2)^2} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

12) Find all real solutions to:

$$x^3 - 4x^2 + 5x = 2$$

- 13) Find the area of the closed region bounded by the x-axis, the y-axis, and the line y = -2x + 2.
- 14) Find the surface area of a sphere with radius 3m.
- 15) Assume x is a real number in the domain of $f(x) = \frac{x^2 - 6x + 5}{x - 5}$. Then f(x) also equals A) *x* - 1 D) both A and B B) $(x - 1)(\sin^2 x + \cos^2 x)$ E) both B and C C) $(x - 1)(sec^{2}x - tan^{2}x)$
- 16) What is the remainder when 3^{26} is divided by 7?
- 17) Suppose x + y = 2 and $x^2 + y^2 = 20$. Find $x^3 + y^3$.
- 18) A man has eight distinct shirts, four distinct pairs of pants and five distinct pairs of shoes. How many different outfits are possible?
- 19) Convert the rectangular coordinates $(1, \sqrt{3})$ to polar coordinates (r, θ) with r > 0 and $0 \le \theta \le 2\pi$.
- 20) Solve for R, the radius of the circle inscribed in the triangle below.

11) <u> </u>	<u>B</u> =	<u> </u>	
12)			
13)			
14)			<u>m</u> ²
15)			
16)			
17)			
18)			
19)			

20)

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2002 Junior Examination (Section II)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1)	Solve for x: $4^{5x} = 2sin(\frac{\pi}{6}) + 3cos(2\pi)$.	1)
2)	Compute $log_2(log_3(9^8))$.	2)
3)	Find the minimum value of the function $f(x) = 3x^2 - 6x + 10$.	3)
4)	Find the constant term in the expansion of $(y + \frac{1}{2y})^6$.	4)
5)	A man drives from home to work at a speed of 40 mph. The return trip is driven at a speed of 25 mph. What is the man's average speed on the round trip?	5) <u>mph</u>
6)	Find all real roots of $p(x) = x^3 - x^2 + 4x - 4$.	6)
7)	What is the probability that the sum of rolling two fair dice is a 3 or 11?	7)
8)	The three numbers 3, 4, and 6 are :	8)
	A) the sides of an acute triangleB) the sides of an obtuse triangleC) the sides of a right triangleD) not the sides of any triangle	
9)	Express the following without radicals: $\sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}}$.	9)
10)	Find the length b in the triangle below.	10)
	/	

4

60°

b

 $4\sqrt{3}$

11) Compute $sin(\frac{5\pi}{12})$.	11)
12) Find the point (x, y) which lies on the line with equation $y = -3x + 7$ and on the line with equation $y = -5x + 21$.	12) <u>x = y = </u>
13) Find the perimeter of the closed region bounded by the <i>x</i> -axis, the <i>y</i> -axis, the line $x = 3$, and the line $\frac{4}{3}x + y - 7 = 0$.	13)
14) A particle projected vertically upward reaches a velocity of $v(t) = 640 - 32t$ ft/sec at the end of <i>t</i> seconds. Find the time <i>t</i> (in seconds) when the particle reaches its maximum height.	14) <u>t = sec.</u>
15) The graph of the inequality $x^2 - 6x + y^2 - 10y \le 66$ is	15)
A) a circleC) a closed circular diskB) a parabolaD) a hyperbolaE) none of the above	
16) Which number best completes the following sequence?7, 19, 9, 18, 12, 18, 16, 19,	16)
A) 17 B) 21 C) 12 D) 19	
17) Find the domain of the function $f(x) = \arcsin(2x + 3)$	17)
18) Assume that three angles of a triangle are in arithmetic progression. Moreover, assume that the measure of the smallest angle (in radians) is one-half the measure of the largest angle. Find the measures (in radians) of the three angles.	18)
19) Suppose <i>f</i> and <i>g</i> are functions such that $g(4) = 2, f(4) = 5, f(2) = -3$ and $g(2) = 6$. Find $(f \circ g)(4)$.	19)
20) Find all real values of x that satisfy the following:	20)

 $log_7(x+4) + log_7(x+2) = 1$