LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2002 Junior Examination
(Section I)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Find the equation, in slope-intercept form, of the line which passes through the point $(1,2)$ and is perpendicular to the line with equation $5 x=10 y+3$.
2) How many distinct 7 -letter strings can be generated from the letters in the word ALABAMA?
3) Assume a daughter's, mother's and grandmother's combined age is 130 years. If the daughter age is one third that of the mother, and the grandmother's age is twice the mother's age, how old is the daughter?
4) Find a number t, such that the line passing through $(t+2,4)$ and $(8,-4 t+1)$ has a slope of 3 .
5) If 2 gears, each of radius 5 in., are used in a chain drive system with a chain of length 60 in ., what is the distance between the centers of the gears?

6) The graph of the equation $x y^{2}-x^{3}-7 y^{2}+7 x^{2}=0$ is that of
7) \qquad
8)
9) \qquad
10) \qquad
11) \qquad
12)

A) a parabola
D) 2 distinct lines
B) a hyperbola
E) none of the above
C) 3 distinct lines
7) Find the length of the line segment connecting the points (5,3) and (10, -9).
8) How many real roots does $p(x)=x^{6}-6 x^{3}+x^{2}-2 x+11$ possess?
9) Find all the real values of x such that $5 x^{2} \leq 100 x-500$,
7) \qquad
8) \qquad
9) \qquad
10) What is the smallest number of marbles that can be divided
10) \qquad equally among 6 boys, then among 8 boys, then among 10 boys, and finally among 12 boys?
11) Find A, B, and C such that

$$
\frac{5 x-3}{(x-1)(x-2)^{2}}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}
$$

12) Find all real solutions to:

$$
x^{3}-4 x^{2}+5 x=2
$$

13) Find the area of the closed region bounded by the x-axis, the y-axis, and the line $y=-2 x+2$.
14) Find the surface area of a sphere with radius 3 m .
15) Assume x is a real number in the domain of $f(x)=\frac{x^{2}-6 x+5}{x-5}$. Then $f(x)$ also equals
A) $x-1$
D) both A and B
B) $(x-1)\left(\sin ^{2} x+\cos ^{2} x\right)$
E) both B and C
C) $(x-1)\left(\sec ^{2} x-\tan ^{2} x\right)$
16) What is the remainder when 3^{26} is divided by 7 ?
17) Suppose $x+y=2$ and $x^{2}+y^{2}=20$. Find $x^{3}+y^{3}$.
18) A man has eight distinct shirts, four distinct pairs of pants and five distinct pairs of shoes. How many different outfits are possible?
19) Convert the rectangular coordinates $(1, \sqrt{3})$ to polar coordinates (r, θ) with $r>0$ and $0 \leq \theta \leq 2 \pi$.
20) Solve for R, the radius of the circle inscribed in the triangle below.

21) \qquad
22) $A=\quad B=\quad C=$ \qquad
23) \qquad
24) \qquad
25) \qquad
26) \qquad
27) \qquad
28) \qquad
29) \qquad
30) \qquad

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2002 Junior Examination
(Section II)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Solve for x : $\quad 4^{5 x}=2 \sin \left(\frac{\pi}{6}\right)+3 \cos (2 \pi)$.
2) Compute $\log _{2}\left(\log _{3}\left(9^{8}\right)\right)$.
3) Find the minimum value of the function $f(x)=3 x^{2}-6 x+10$.
4) Find the constant term in the expansion of $\left(y+\frac{1}{2 y}\right)^{6}$.
5) A man drives from home to work at a speed of 40 mph .

The return trip is driven at a speed of 25 mph . What is the man's average speed on the round trip?
6) Find all real roots of $p(x)=x^{3}-x^{2}+4 x-4$.
7) What is the probability that the sum of rolling two fair dice is a 3 or 11 ?
8) The three numbers 3,4 , and 6 are :
8) \qquad
A) the sides of an acute triangle
B) the sides of an obtuse triangle
C) the sides of a right triangle
D) not the sides of any triangle
9) Express the following without radicals: $\sqrt{4+2 \sqrt{3}}-\sqrt{4-2 \sqrt{3}}$.
6) \qquad
7) \qquad

1) \qquad
2) \qquad
3) \qquad
4) \qquad
5) \qquad mph
6) Compute $\sin \left(\frac{5 \pi}{12}\right)$.
7) Find the point (x, y) which lies on the line with equation $y=-3 x+7$ and on the line with equation $y=-5 x+21$.
8) Find the perimeter of the closed region bounded by the x-axis, the y-axis, the line $x=3$, and the line $\frac{4}{3} x+y-7=0$.
9) A particle projected vertically upward reaches a velocity of $v(t)=640-32 t \mathrm{ft} / \mathrm{sec}$ at the end of t seconds. Find the time t (in seconds) when the particle reaches its maximum height.
10) The graph of the inequality $x^{2}-6 x+y^{2}-10 y \leq 66$ is
A) a circle
C) a closed circular disk
B) a parabola
D) a hyperbola
E) none of the above
11) Which number best completes the following sequence?
$7,19,9,18,12,18,16,19$,
A) 17
B) 21
C) 12
D) 19
12) Find the domain of the function
13) \qquad $f(x)=\arcsin (2 x+3)$
14) Assume that three angles of a triangle are in arithmetic progression. Moreover, assume that the measure of the smallest angle (in radians) is one-half the measure of the largest angle. Find the measures (in radians) of the three angles.
15) Suppose f and g are functions such that $g(4)=2, f(4)=5$, $f(2)=-3$ and $g(2)=6$. Find $(f \circ g)(4)$.
16) Find all real values of x that satisfy the following:

$$
\log _{7}(x+4)+\log _{7}(x+2)=1
$$

16) \qquad

-

15) \qquad
\square
保
16) \qquad
17) \qquad
\qquad
