LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2003 Junior Examination
(Section I)
NAME: \qquad Address: \qquad
SCHOOL: \qquad City/ZIP: \qquad
Telephone: \qquad
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Find the equation of the line perpendicular to the line
$y-2 x=3 x+15$ that passes through the point $(1,4)$.
Express your answer in slope-intercept form.
2) Suppose $f(x)=x^{2}+k x+3$. Find a value for k such that $f(2)=f(5)$.
3) For which value(s) of x does the graph of $f(x)=\frac{x^{2}+12 x+35}{(x+2)(x+5)}$ have a vertical asymptote?
4) Find the rectangular coordinates of the point whose polar coordinates are given as $\left(7,-\frac{2 \pi}{3}\right)$.
5) Find the sum of the following: $5+\frac{5}{4}+\frac{5}{16}+\frac{5}{64}+\frac{5}{256}+\ldots$
6)
7)
8) \qquad
9) $k=$
10) \qquad
\qquad
11) Find all real values of x satisfying $|x+7| \geq 3$.
12) \qquad
13) \qquad
14) What is the probability of getting a sum of 6 or 8 when throwing 3 fair six-sided dice?
15) Find the value of $\sin \left(8 \arccos \frac{\sqrt{3}}{2}\right)$.
16) \qquad
17) \qquad
18) Suppose $f(x)=2 x^{2}+3$. Write $\frac{f(x+h)-f(x)}{h}$, in the form $a x+b h$, where $h \neq 0$.
19) Factor completely: $p(x)=x^{4}-4 x^{3}+6 x^{2}-4 x+1$.
20) \qquad
21) Find the area of the shaded region in the figure below.

22) Find real numbers A and B such that

$$
\frac{\sqrt{-6} \sqrt{-144}}{\sqrt{54}}=A+B i
$$

13) An urn contains 8 identical orange balls and 12 identical green balls. Three balls are drawn at random from the urn. What is the probability that at least 1 ball is not orange?
14) Find the maximum value of the function $f(x)=-x^{6}+5 x^{3}-3$.
15)
16) \qquad
17) Find the length of $\overline{A B}$ in the triangle below.
18) \qquad

19) Express the constant $\log _{2}(e) \ln (4)$ without logarithms.
20) Find the vertex of the parabola

$$
\sqrt{(3 x+3)^{2}+y^{2}}=\sqrt{x^{2}+(y+3)^{2}}
$$

18) Find the coefficient of $x^{56} y^{2}$ in the expansion of $\left(x^{2}-2 y\right)^{30}$.
19) \qquad
20) Suppose $f(x)=3 x^{5}-30 x^{4}+47 x^{3}+8 x^{2}+x+70$. Find $f(8)$.
21) \qquad
22) Assume $f(x)=\frac{(x-A)}{(B x-C)}$. For what values of the constants A, B
23) \qquad and C does $f(f(x))=x$?
i) $A=2, B=-3, C=-1$
iv) ii) and $i i i$)
ii) $A=-4, B=1, C=1$
v) i) and $i i$)
iii) $A=0, B=0, C=-1$

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
 Wilkes University - 2003 Junior Examination

(Section II)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) For what value of k is the line $5 x-k y=7$ perpendicular to the line $3 x+8 y=4$?
2) What is the largest prime number smaller than 100 ?
3) Suppose $f(x)=3 x(2-x)$. Find all real values x such that $f(x)=x$.
4) How many distinct diagonals does a pentagon have?
5) The mean of eighteen numbers is 14 . If three numbers are removed, the new mean is 17 . What is the cube of the sum of the numbers that were removed?
6) The diameter of a circle is 24 cm . By what amount must the radius be decreased in order to decrease the area by $80 \pi \mathrm{~cm}^{2}$?
7) Compute the length of the circular arc below: (in radians)

8) Assume we are provided with the following information of a pool of 1000 individuals -
i) 600 are employed
ii) 800 are high-school graduates
iii) 500 are high-school graduates and are employed

What is the probability a person chosen from this pool is employed and not a high-school graduate?
9) Suppose there is a lottery in which 1 in 3 tickets wins a prize.

If 3 tickets are purchased, what is the probability of winning a prize?
10) Find the equation of the line, in slope-intercept form, that passes through the points $(3,6)$ and $(8,-4)$.

1) \qquad
2)
3) \qquad
4) \qquad
5) \qquad
6) \qquad
7) \qquad
8) \qquad
9) \qquad
10) \qquad
(OVER)
11) Suppose that a cube has edges of length s units. If each edge is increased by 2 units, express the increase in the cube's surface area in terms of s.
12) Find all x such that: $\quad 4^{x^{2}}=2^{8 x-6}$
13) Find the domain of the function $f(x)=\frac{\sqrt{5 x-2}}{\sqrt{4 x}-3}$.
14) Factor $4 x^{4}-28 x^{2}+24 x$ into irreducible factors.
15) Find all (x, y) satisfying the following system of equations.

$$
\begin{aligned}
& 4^{x}+4^{y}=80 \\
& 2^{x}+2^{y}=12
\end{aligned}
$$

16) Find real numbers A and B such that

$$
\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{72}=A+B i
$$

17) Find all real numbers $\theta, 0 \leq \theta \leq \frac{\pi}{2}$, which satisfy the equation $\frac{\sin 2 \theta}{\sec 2 \theta}=\frac{\sqrt{3}}{4}$.
18) Express $\frac{(50!)^{51}}{(51!)^{50}} \cdot \frac{51^{48}}{48!}$ as a fraction in lowest terms.
19) If $f(2)=I$, and, $f(3)=J, f(5)=K$, where I, J, and K are positive integers. Suppose $f(a b)=f(a) f(b)$ for all positive integers a and b. Find $f\left(360^{n}\right)$, where n is a positive integer, in terms of n, I, J, and K respectively.
20) Find the area of the shaded region between the two concentric circles as shown in the figure below.

21) \qquad
22) \qquad
23) \qquad
24)
25) \qquad
26) $A=$
$B=$
27) \qquad
28) \qquad
29) \qquad
30) \qquad
