LUZERNE COUNTY MATHEMATICS CONTEST
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 2004 Junior Examination
 (Section I)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) What is the diameter of a circle with area $16 \pi \mathrm{~m}^{2}$?
2) What is $\frac{3}{10}$ of $\frac{1}{2}$ of $\frac{57}{101}$?
3) Find the length of a diagonal of a cube which has volume 8 .
4) What is the midpoint of the line segment joining points $(1,2)$ and $(-4,3)$?
5) For which values of k does the equation $x^{2}+2 k=-3 x$ have exactly one (1) real solution?
6) Find the fraction, reduced to lowest terms, whose decimal representation is the repeating decimal.$\overline{36}$.
7) A non-taxable $\$ 10$ item is on sale for 60% off. A cashier makes an error and applies 2 successive reductions of 30% to the item. How much money does the customer lose due to the error?
8) Find all solutions to $3 \tan \frac{x}{5}=\sqrt{3}$ on the interval [$\left.4 \pi, 6 \pi\right]$.
9) Through how many radians does the hour hand on a clock move between $2: 00 \mathrm{pm}$ and $7: 15 \mathrm{pm}$ on the same day?
10) Given that $\sin \theta=\frac{\sqrt{2}}{2}, \sin 2 \theta$ is equal to
11)
12) $x=$
A) $\sqrt{2}$
C) -1
B) 1
D) this value cannot be uniquely determined
13) Which of the following expressions is equivalent to
14)

$$
\frac{a^{-2}\left(b^{2} c^{3}\right)^{-3}}{\left(a^{-5} b^{-4}\right)^{2} c^{-7}} ?
$$

A) $a^{8} b^{2} c^{2}$
B) $\frac{a^{8} c^{2}}{b^{2}}$
C) $\frac{a^{8} b^{2}}{c^{2}}$
D) $\frac{b^{8} c^{2}}{a^{2}}$
E) None of the above
12) A car leaves Wilkes-Barre traveling at a constant speed of
12) \qquad 57 mph . Forty five minutes, later a second car leaves from the same place and travels at a constant speed of 64 mph along the same road. How long will it take for the second car to catch up with the first?
13) Suppose $f(x)=\arcsin x-2 x, g(x)=\cos x$, and $h(x)=x+\pi$.
13) \qquad
Find $(f \circ g \circ h)\left(\frac{\pi}{4}\right)$.
14) The value of x in the triangle below is
14) \qquad

A) $\sqrt{73}$
D) the value is unique, but it is not $\mathrm{A}-\mathrm{C}$
B) 7
E) it cannot be uniquely determined given this information
15) Find all real numbers x such that $e^{2 x}-3 e^{x}+2=0$
16) How many real zeroes does the polynomial
16)
$p(x)=x^{6}+x^{4}+x^{2}+1$ possess?
17) What is the minimum value of the function $f(x)=\sqrt{3} x^{2}+x+4$.
17) \qquad
18) Solve for p in terms of q if $\log p+\log q=\log (p+q)$ where
18) \qquad $q \neq 1$.
19) A quiz has 4 multiple-choice questions with each question
19) \qquad having 4 choices. Suppose a student guesses on all questions. What is the probability that the student gets at least one question correct?
20) Find all ordered pairs that satisfy the system:
20) \qquad

$$
\begin{aligned}
& x^{2}+x y=1 \\
& y^{2}+x y=8
\end{aligned}
$$

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2004 Junior Examination
(Section II)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) What value of c makes $x=8$ and $x=-4$ solutions to the equation $x^{2}-4 x+c=0$?
2) A student has earned grades of $75,82,71$, and 84 . What score must the student receive on the next exam to attain an average of 80 ? (All tests are weighted equally)
3) Find the length of x if the shaded area is 90 in ${ }^{2}$.

11

4) How many distinct solutions does the equation $2 \cos 4 \theta=1$ have on the interval $\left[0, \frac{3 \pi}{2}\right]$?
A) 0
B) 2
C) 4
D) 6
E) 8
F) an infinite number of distinct solutions
5) Find the distance in the plane between the point $P=(0,8)$ and the point $Q=(-4,2)$.
6) A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river.
Assuming the farmer wants to maximize the area, how long is the piece of fence parallel to the river?
7) In quadrilateral $A B C D, A B \perp B C$ and $D C \perp B C . \overline{A B}=4$, $\overline{D C}=3$, and $\overline{B C}=2$. Find the area of the quadrilateral.
8) How many distinct strings can be formed from permutations of the string ALABAMA ?
A) 5040
B) 35
C) 210
D) 840
E) None of the above
9) Find all values of x such that $\frac{x+1}{2 x-3}>0$.
10) Completely factor the polynomial $\left(x^{2}+3\right)^{2}-6\left(x^{2}+3\right)+8$.

1) $c=$
2) \qquad
3) \qquad in
4) \qquad
5) Assume you roll two fair six-sided dice. What is the probability the sum of the dice is greater than 8 ?
6) How many distinct real numbers x satisfy the equation below?
7) \qquad
8) \qquad

$$
x^{2}-8 x+5-\cos ^{2} x=(x-4)^{2}-11+\sin ^{2} x
$$

A) none
D) four
B) two
E) all real numbers
C) one
13) A six-foot tall man is walking away from a lamp post that has
13) \qquad its light source 20 feet above the ground. How far from the lamp post is the man when the shadow is twelve feet long?
14) If $\sin T=\frac{-4}{9}$, find $\tan T \cot T+\csc T$.
14)
15) Which of the following cubic polynomials with integer
15) \qquad coefficients have roots at $x=3,2+i$, and $2-i$ respectively?
A) $x^{3}-3 x^{2}+5 x-15$
B) $\left(3 x^{2}+15\right)(x-3)$
C) $x^{3}-7 x^{2}+17 x-15$
D) all of the above
16) Find all values x such that $5-|4 x+1| \leq 2$.
16) \qquad
17) Find the rectangular coordinates for the point whose polar
17) \qquad coordinates are given by $\left(8, \frac{5 \pi}{3}\right)$.
18) In triangle $A B C$ below, the line segment k bisects angle C.
18) \qquad Find the length of k.

19) Evaluate $15^{4}-6^{4}$
20) The locus of points defined by the equation
19) \qquad
$5 x^{2}-10 x+6 y^{2}+36 y=-34$ defines
A) a non-circular ellipse
B) a circle
C) an hyperbola
D) a point
E) none of the above as a subset of the plane

