LUZERNE COUNTY MATHEMATICS CONTEST Luzerne County Council of Teachers of Mathematics Wilkes University - 2004 Junior Examination (Section I)

(Section	11)	
NAME:	Address:	
SCHOOL:	_ City/ZIP:	
	Telephone:	
Directions: For each problem, write your answer in the spa Simplify all fractions and radicals. Your answer must be con	ace provided. Do not use approximations. mplete to receive credit for a problem.	
1) What is the diameter of a circle with area $16\pi \text{ m}^2$?	1) m	
2) What is $\frac{3}{10}$ of $\frac{1}{2}$ of $\frac{57}{101}$?	2)	
3) Find the length of a diagonal of a cube which has volu	me 8. 3)	
4) What is the midpoint of the line segment joining point (1, 2) and (-4, 3) ?	s 4)	
5) For which values of k does the equation $x^2 + 2k = -3x$ have exactly one (1) real solution?	5) <u>k</u> =	
6) Find the fraction, reduced to lowest terms, whose decime representation is the repeating decimal $.\overline{36}$.	nal 6)	
7) A non-taxable \$10 item is on sale for 60% off. A cash an error and applies 2 successive reductions of 30% to the How much money does the customer lose due to the error	nier makes 7) <u>\$</u> e item. ?	
8) Find all solutions to 3 tan $\frac{x}{5} = \sqrt{3}$ on the interval	$[4\pi, 6\pi].$ 8) <u>x</u> =	
9) Through how many radians does the hour hand on a cl between 2:00 pm and 7:15 pm on the same day?	lock move 9)	
10) Given that $\sin \theta = \frac{\sqrt{2}}{2}$, $\sin 2\theta$ is equal to	10)	
A) √ 2 C) −1		
B) 1 D) this value cannot uniquely determ	be nined	
	(OVER	

11) Which of the following expressions is equivalent to $\frac{a^{-2}(b^2c^3)^{-3}}{(a^{-5}b^{-4})^2c^{-7}}?$	11)
A) $a^{8}b^{2}c^{2}$ B) $\frac{a^{8}c^{2}}{b^{2}}$ C) $\frac{a^{8}b^{2}}{c^{2}}$ D) $\frac{b^{8}c^{2}}{a^{2}}$	
E) None of the above	
12) A car leaves Wilkes-Barre traveling at a constant speed of 57 mph. Forty five minutes, later a second car leaves from the same place and travels at a constant speed of 64 mph along the same road. How long will it take for the second car to catch up with the first?	12) <u>hrs</u>
13) Suppose $f(x) = \arcsin x - 2x$, $g(x) = \cos x$, and $h(x) = x + \pi$. Find $(f \circ g \circ h)(\frac{\pi}{4})$.	13)
14) The value of <i>x</i> in the triangle below is	14)
A) $\sqrt{73}$ D) the value is unique, but it is	s not A - C
B) 7 E) it cannot be uniquely deter given this information	mined
30° $C) 10^{\circ}$	
15) Find all real numbers x such that $e^{2x} - 3e^x + 2 = 0$	15) <u>x</u> =
16) How many real zeroes does the polynomial $p(x) = x^6 + x^4 + x^2 + 1$ possess?	16)
17) What is the minimum value of the function $f(x) = \sqrt{3}x^2 + x + 4$.	17)
18) Solve for <i>p</i> in terms of <i>q</i> if $\log p + \log q = \log (p + q)$ where $q \neq 1$.	18) <u>p =</u>
19) A quiz has 4 multiple-choice questions with each question having 4 choices. Suppose a student guesses on all questions. What is the probability that the student gets at least one question correct?	19)
20) Find all ordered pairs that satisfy the system: $x^{2} + xy = 1$ $y^{2} + xy = 8$	20)

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2004 Junior Examination (Section II)

NAME:	Address:
SCHOOL:	City/ZIP: Telephone:
Directions: For each problem, write your answer in the sp Simplify all fractions and radicals. Your answer must be co	ace provided. Do not use approximations. mplete to receive credit for a problem.
1) What value of <i>c</i> makes $x = 8$ and $x = -4$ solutions to the $x^2 - 4x + c = 0$?	the equation 1) $c =$
2) A student has earned grades of 75, 82, 71, and 84. We score must the student receive on the next exam to attain a of 80? (All tests are weighted equally)	nat 2) n average
3) Find the length of x if the shaded area is 90 in ² . 11	3) $x = in$
x 12	
4) How many distinct solutions does the equation $2 \cos 4$ on the interval $[0, \frac{3\pi}{2}]$?	$4\theta = 1$ have 4)
A) 0 B) 2 C) 4 D) 6 E) 8	
F) an infinite number of distinct solutions	
5) Find the distance in the plane between the point $P = (0, 0)$ and the point $Q = (-4, 2)$.	, 8) 5)
6) A farmer has 2400 ft of fencing and wants to fence of field that borders a straight river. He needs no fence alon Assuming the farmer wants to maximize the area, how lor of fence parallel to the river?	f a rectangular 6) <u>ft</u> g the river. g is the piece
7) In quadrilateral <i>ABCD</i> , $AB \perp BC$ and $DC \perp BC$. \overline{A} $\overline{DC} = 3$, and $\overline{BC} = 2$. Find the area of the quadrilateral.	$\overline{B} = 4$, 7)
8) How many distinct strings can be formed from permu of the string <i>ALABAMA</i> ?	tations 8)
A) 5040 B) 35 C) 210 D) 840 E) None of	the above
9) Find all values of x such that $\frac{x+1}{2x-3} > 0$.	9)
10) Completely factor the polynomial $(x^2 + 3)^2 - 6(x^2 - 6)^2$	+ 3) + 8. 10)

(OVER)

12) How many distinct real numbers x satisfy the equation below? 12) $x^{2} - 8x + 5 - \cos^{2}x = (x - 4)^{2} - 11 + \sin^{2}x$ A) none D) four B) two E) all real numbers C) one 13) A six-foot tall man is walking away from a lamp post that has 13) ______ft____ its light source 20 feet above the ground. How far from the lamp post is the man when the shadow is twelve feet long? **14)** If $\sin T = \frac{-4}{9}$, find $\tan T \cot T + \csc T$. 14)_____ 15) Which of the following cubic polynomials with integer 15)_____ coefficients have roots at x = 3, 2 + i, and 2 - i respectively? A) $x^3 - 3x^2 + 5x - 15$ B) $(3x^2 + 15)(x - 3)$ C) $x^3 - 7x^2 + 17x - 15$ D) all of the above 16) Find all values x such that $5 - |4x + 1| \le 2$. 16) 17) _____ 17) Find the rectangular coordinates for the point whose polar coordinates are given by (8, $\frac{5\pi}{3}$). **18)** In triangle ABC below, the line segment k bisects angle C. 18) Find the length of k. k \ 19) _____ **19)** Evaluate $15^4 - 6^4$ 20) 20) The locus of points defined by the equation $5x^2 - 10x + 6y^2 + 36y = -34$ defines A) a non-circular ellipse B) a circle C) an hyperbola D) a point E) none of the above as a subset of the plane

11)_____

11) Assume you roll two fair six-sided dice. What is the probability

the sum of the dice is greater than 8?