LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2008 Junior Examination
(Section I)

NAME: Addres		Address:	
SCH	00L:	City/ZIP:	
		Telephone:	
Direc Simp	etions: For each problem, write your answer in the spa plify all fractions and radicals. Your answer must be con	ace provided. Do not use approximations. omplete to receive credit for a problem.	
1) 1	$6 + 8 \div 4 \cdot 2 = ?$.	1)	
((a) 20 (b) 12 (c) 17 (d) none of the above 		
2) V	What is the circumference of a circle with a radius of 4	units? 2)	
	Find the surface area of a right circular cylinder with rad and height 4 units.	adius 2 3)	
4) F	Find the vertex of the parabola $y^2 - 6y - x + 16 = 0$.	. 4)	
1	Find all real values of k such that the line segment pasthrough the points $(3, 4)$ and $(-5, 2)$ is perpendicular to segment passing through the points $(-6, 1)$ and $(k, 7)$.	to the line	
6) I	Find the 57^{th} term of the sequence 12, -4 , 17, -9 , 22,	- 14, 6)	
	A square and a circle have equal perimeters. What is the area of the circle to the area of the square?	ne ratio of the 7)	
	Suppose a , b and c are real numbers such that $ab=7$ are If $a+c=5$, then $b=?$	and $bc = 8$. 8) $b =$	_
	If $f(x) = a^x$ where $a > 0$, express $\frac{f(x+1) - f(x)}{f(x)}$ as of a which does not depend on x .	s a function 9)	
	The three digit number $2a3$ is added to 326 to give the number $5b9$. If $5b9$ is divisible by 9, what is $a + b$?		

- 11) If the sum of the first 3n positive integers is 150 more than the sum of the first n positive integers, then the sum of the first 4npositive integers is
- 11)_____

- (a) 300
- **(b)** 350
- **(c)** 400
- **(e)** 600
- 12) If $\frac{|a|}{a-a^2} = \frac{1}{a-1}$, then a will satisfy

12)

- (a) a > 0 and $a \ne 1$
- **(b)** $a \le 0$

(d)450

- (c) $a \neq 0$ and $a \neq 1$
- (d) a < 0
- 13) Suppose $\sin(\theta) = \frac{x-1}{x+1}$ where $0 \le x \le 1$. Find all real solutions xto $\tan \theta = -3\sqrt{x}$.
- 13)____
- **14)** If x and y satisfy $(x+5)^2 + (y-12)^2 = 14^2$, then the minimum of $x^2 + y^2$ is
- 14)

- (a) 2
- **(b)** 1 **(c)** $\sqrt{3}$
- $(\mathbf{d})\sqrt{2}$
- **15)** Assume we throw two fair dice. What is the probability that the sum of the top faces is less than or equal to 5?
- **16**) If in a sequence $\{x_n\}_{n \ge 1}$, $x_1 = 1$ and $x_{n+1} = \frac{\sqrt{3} x_n + 1}{\sqrt{3} x_n}$, then $x_{1999} - x_{601} = ?$
- **17**) If $4x^2 6x + m = (x-3)(ax+b)$ where a, b, and m are real numbers, what is the value of m?
- 17) <u>m=</u>
- **18**) Find all real solutions x to $\sin 3x = \frac{1}{2}$, where $0 \le x \le \frac{\pi}{2}$.
- 19) Determine all real solutions to the equation $\sqrt{x+4} + \sqrt{x+6} = 2$.
- 19)_____
- **20)** If x_1 and x_2 are real solutions to $x^2 + kx + 5(k-5) = 0$ and $2x_1 + x_2 = 7$, find all real values for k.
- 20)

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics
Wilkes University - 2008 Junior Examination
(Section II)

NAME:	Address:			
SCHOOL:	City/ZIP:			
	Telephone:			
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.				
1) A right triangle has legs of length 12 and 16 units res What is the perimeter of the triangle?	pectively. 1)			
2) Find all real numbers x which satisfy $x^2 + 5x < -$	6. 2)			
3) Find the equation of the line that is a perpendicular be the line segment with endpoints (5, 2) and (-3, 6).	isector of 3)			
4) Write $\frac{(.02)^5}{(.03)^3}$ as a fraction in lowest terms.	4)			
5) Find the area of a triangle with vertices $(-3, -5)$, $(2, -5)$	3) and (4, -5) 5)			
6) Convert $(2, \frac{5\pi}{3})$ from polar to rectangular coordina	tes. 6)			
7) If $f(x) = \sqrt{x}$ and $g(x) = x^2 + 1$, then $(f \circ g \circ f)(x)$	7)			
(a) $\sqrt{x^2 + 1}$ for all x (b) $\sqrt{x^2 + 1}$ for x	≥0			
(c) $\sqrt{x+1}$ for $x \ge 0$. (d) $\sqrt{x+1}$ for all	x			
8) If $f(x) = x-1 - x $, then $f(f(\frac{1}{2})) = ?$	8)			
9) Express $\frac{i^4 + i^2}{i + 1}$ as a real number.	9)			
10) Let f be an even function and g be an odd function surface defined for all x . Which of the following are even (a) $f \circ g$ (b) $g \circ f$	n functions?			

(e) both (b) and (c)

(**d**) both (a) and (b)

11) Suppose
$$x \ge 1$$
. Write
$$\frac{\sec^2\left(\arctan\sqrt{x^2-1}\right)\left(\log_{10} 10,000\right) - 64^{\frac{2}{3}}}{e^{3\ln(x+2)}}$$
as a rational expression in x .

- 12) Find the coefficient of $x^2y^2z^5$ in the expansion of $(-3x + y + z)^9$.
- 12)
- **13**) A person buys 3 oranges for 10 cents. He sells 5 oranges for 20 cents. How many oranges must be sell to make a \$1 profit?
- 13)_____
- **14)** What is the remainder when $x^{79} + 17x^{28} 6x^{12} + x 12$ is divided by x+1?
- 14)
- **15**) Express the solution x to the equation $\log_{10} x 5\log_{10}(3) = 2$ as an integer.
- 15)_____

16) Express $2\sqrt{3-2\sqrt{2}} + \sqrt{17-12\sqrt{2}}$ as an integer.

- **16**)
- 17) How many of the first one hundred positive integers are divisible by all of the following numbers: 2, 3, 4, and 5?
- 17)_____

18) If $\frac{a-b}{a} = \frac{3}{5}$, then $\frac{a}{b}$ is

- (a) $\frac{2}{5}$ (b) $\frac{5}{2}$ (c) $-\frac{2}{5}$ (d) $\frac{5}{2}$
- **19**) If $f(x) = \begin{cases} x^2, & x \le 0 \\ -x^2, & x > 0 \end{cases}$, find the inverse function $f^{-1}(x)$.
- 19) $f^{-1}(x) =$

- **20**) Let *r* and *s* be two solutions to the equation $x^2 + x 3 = 0$. The value of $r^3 - 4s^2 + 19$ is
- 20)

- $(a)^{-}4$ (b) 8 (c) 6
- **(d)** 0