LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2002 Senior Examination (Section I)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:
Directions: For each problem, write your answer in the spa Simplify all fractions and radicals. Your answer must be con	
1) Find the volume of a sphere with radius 8 m.	1)m ³
2) Convert $0.\overline{345} = 0.345345$ into a fraction expressed lowest terms.	in 2)
3) Assume $f(x) = 2x^3$. Evaluate and simplify $\frac{f(x+h) - f(x+h) - f(x+h)}{h}$	<u>(x)</u> . 3)
4) How many ways can 25 indistinguishable balls be plac 3 distinguishable urns if each urn must be nonempty?	eed into 4)
5) Find $\lim_{x \to 2} \frac{2x^2 - 6x + 4}{x^2 + 3x - 10}$.	5)
6) If $\sin x = \frac{2}{3}$ and $\sec y = \frac{4}{3}$ where $0 < x < \frac{\pi}{2}$ and $0 < y < \frac{\pi}{2}$, evaluate $\sin (x + y)$.	6)
7) Find all real numbers x satisfying $ x+2 ^2+2 x+6 - 16 = 0$	7)
8) Find the domain of the function $f(x) = \frac{\sqrt{x+7}}{x-4}$.	8)
9) What is the smallest number of marbles that can be div among 8 boys, then among 9 boys, then among 12 bo finally among 15 boys?	
10) Consider the diagram below. What is the area of the since $2 \rightarrow 2$	haded region? 10)

11) The shaded region below is that of a trapezoid. Determine the height of the trapezoid if *A* and *B* below are midpoints.

- 12) Find all real numbers x satisfying $x^3 5x^2 + 8x = 4$.
- 13) Find all real numbers x satisfying $x^{\ln x} = e^2 x$.
- 14) Compute $(2^0 + 2^1 + \ldots + 2^{11}) (2^0 + 2^2 + \ldots + 2^{10}).$
- 15) Assume $\frac{p}{q}$ is a positive rational number in lowest terms. List all pairs (p, q) such that $9(\frac{q}{p}) = \frac{p}{q}$.
- 16) Find the sum of the integers 21 through 74 inclusive.
- 17) If ln x = A and ln y = B, then write the following in the form kA + lB where k and l are rational numbers $ln (\sqrt[10]{x^3y^4})$
- 18) Solve $\frac{1}{x+2} \ge \frac{2}{5}$.
- 19) Find the equation, in slope-intercept form, of the line which passes through the point (1, 2) and is parallel to the line with equation 10x = 5y + 20.
- 20) How many integer triples (x, y, z) satisfy $x^2 + y^2 - 4z - 3 = 0$?

A) 0 B) 1 C) infinitely many D) none of the above

12)_____ 13)_____ 14) 15)_____ 16)_____ 17)_____ 18)_____ 19) _____ 20)

11)_____

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2002 Senior Examination (Section II)

NAME:	Address:
SCHOOL:	City/ZIP:
	Telephone:

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Solve for x: $8^{3x} = 5 \sin(\frac{\pi}{2}) + 6 \cos(\frac{\pi}{3})$	1)
 Assume a rectangle has an area 60 m² and a diagonal of length 13 m. Find the dimensions of the rectangle. 	2) <u>m. by m.</u>
3) What is the probability of rolling a sum of 5 or 8 on two fair dice?	3)
4) Find the perimeter of the closed region bounded by the <i>x</i> -axis, the <i>y</i> -axis, the line $x = 3$ and the line $\frac{4}{3}x + y - 7 = 0$.	4)
5) Find all the real roots of $p(x) = x^3 + x^2 + 9x + 9$.	5)
6) Express the complex number $-4\sqrt{3} + 4i$ in the form $r(\cos \theta + i \sin \theta)$ where $r > 0$ and $0 \le \theta \le 2\pi$.	6)
7) Find $\lim_{x \to \infty} \frac{5 \sin x + \cos x}{x}$.	7)
8) Compute $sin(\frac{\pi}{12})$.	8)
 9) Which number best completes the following sequence? 7, 19, 9, 18, 12, 18, 16, 19, 	9)
A) 17 B) 21 C) 12 D) 19	
10) What is the value of h in the trapezoid below?	10)

44

32 h

6

6

11) Three circles, each having a radius of 4 units are mutually tangent. Find the area of the shaded area between the circles.

12) Find the constant term in the expansion of $(y - \frac{1}{y})^{10}$.

- 13) Compute $\lim_{x \to 1} \frac{5x^2 15x + 10}{x^2 4x + 3}$.
- 14) Assume a person flips five fair coins. What is the probability of obtaining at least 4 heads?
- 15) Compute $log_2 (log_3 (9^8))$.
- 16) Find all real numbers k so that 2 $\sqrt{3}$ is a root of $p(x) = x^2 - 4x + k$
- 17) Find the ordered pair (x, y) which lies on the line with equation y = 3x + 10 and the line with equation y = 5x - 4.
- 18) In a certain arcade a blue token is worth 5 yellow tokens; a yellow token is worth one-fourth of a green token; and a red token is worth one-half of a yellow token. If a blue token is worth 10 points, how much are 6 red tokens, 3 yellow tokens and 2 green tokens worth?
- 19) An amoeba propagates by simple division. Suppose each split takes 4 minutes to complete. When such an amoeba is placed in a glass container, the container is full of amoebas in one hour. How long would it take for the container to be filled if we start with 8 amoebas instead of only 1?
- 20) Assume a sequence is recursively defined as follows:

i)
$$a_0 = 5$$

ii) $a_n = a_{n-1} + n$ for any $n \ge 1$

Calculate a_{100} .

- 12)_____ 13) _____ 14)_____ 15)_____ 16)_____ $17) _ x = _ y = _$ 18) _____ points **points** 19) minutes
 - 20)

11)_____

