LUZERNE COUNTY MATHEMATICS CONTEST
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 2002 Senior Examination
 (Section I)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Find the volume of a sphere with radius 8 m .
2) Convert $0 . \overline{345}=0.345345 \ldots$ into a fraction expressed in lowest terms.
3) Assume $f(x)=2 x^{3}$. Evaluate and simplify $\frac{f(x+h)-f(x)}{h}$.
4) How many ways can 25 indistinguishable balls be placed into 3 distinguishable urns if each urn must be nonempty?
5) Find $\lim _{x \rightarrow 2} \frac{2 x^{2}-6 x+4}{x^{2}+3 x-10}$.
6) If $\sin x=\frac{2}{3}$ and $\sec y=\frac{4}{3}$ where $0<x<\frac{\pi}{2}$ and $0<y<\frac{\pi}{2}$, evaluate $\sin (x+y)$.
7) Find all real numbers x satisfying $|x+2|^{2}+2|x+6|-16=0$
8) Find the domain of the function $f(x)=\frac{\sqrt{x+7}}{x-4}$.
9) \qquad
10) \qquad
11) What is the smallest number of marbles that can be divided equally
12) \qquad among 8 boys, then among 9 boys, then among 12 boys and finally among 15 boys?
13) Consider the diagram below. What is the area of the shaded region? 10) \qquad

14) The shaded region below is that of a trapezoid. Determine the height of the trapezoid if A and B below are midpoints.

15) Find all real numbers x satisfying $x^{3}-5 x^{2}+8 x=4$.
16) Find all real numbers x satisfying $\quad x^{\ln x}=e^{2} x$.
17) Compute $\left(2^{0}+2^{1}+\ldots .+2^{11}\right)-\left(2^{0}+2^{2}+\ldots+2^{10}\right)$.
18) Assume $\frac{p}{q}$ is a positive rational number in lowest terms. List all pairs (p, q) such that $9\left(\frac{q}{p}\right)=\frac{p}{q}$.
19) Find the sum of the integers 21 through 74 inclusive.
20) If $\ln x=A$ and $\ln y=B$, then write the following in the form $k A+l B$ where k and l are rational numbers

$$
\ln \left(\sqrt[10]{x^{3} y^{4}}\right)
$$

18) Solve $\frac{1}{x+2} \geq \frac{2}{5}$.
19) \qquad
20) Find the equation, in slope-intercept form, of the line which passes through the point (1,2) and is parallel to the line with equation $10 x=5 y+20$.
21) How many integer triples (x, y, z) satisfy

$$
x^{2}+y^{2}-4 z-3=0 ?
$$

A) 0
B) 1
C) infinitely many
D) none of the above
11) \qquad
12) \qquad
13) \qquad
14) \qquad
15) \qquad
16) \qquad
17) \qquad
19) \qquad
20) \qquad

LUZERNE COUNTY MATHEMATICS CONTEST
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 2002 Senior Examination
 (Section II)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Solve for x :

$$
8^{3 x}=5 \sin \left(\frac{\pi}{2}\right)+6 \cos \left(\frac{\pi}{3}\right)
$$

1) \qquad
2) Assume a rectangle has an area $60 \mathrm{~m}^{2}$ and a diagonal of length 13 m . Find the dimensions of the rectangle.
3) What is the probability of rolling a sum of 5 or 8 on two fair dice?
4) Find the perimeter of the closed region bounded by the
x-axis, the y-axis, the line $x=3$ and the line $\frac{4}{3} x+y-7=0$.
5) Find all the real roots of $p(x)=x^{3}+x^{2}+9 x+9$.
6) Express the complex number $-4 \sqrt{3}+4 i$ in the form
\qquad
7) \qquad
8) \qquad
$r(\cos \theta+i \sin \theta)$ where $r>0$ and $0 \leq \theta \leq 2 \pi$.
9) Find $\lim _{x \rightarrow \infty} \frac{5 \sin x+\cos x}{x}$.
10)

\qquad
6) \qquad
8) Compute $\sin \left(\frac{\pi}{12}\right)$.
8) \qquad
9) Which number best completes the following sequence?
9) \qquad
$7,19,9,18,12,18,16,19$,__
A) 17
B) 21
C) 12
D) 19
10) What is the value of h in the trapezoid below?
10) \qquad

(OVER)
11) Three circles, each having a radius of 4 units are mutually tangent. Find the area of the shaded area between the circles.

12) Find the constant term in the expansion of $\left(y-\frac{1}{y}\right)^{10}$.
13) Compute $\lim _{x \rightarrow 1} \frac{5 x^{2}-15 x+10}{x^{2}-4 x+3}$.
14) Assume a person flips five fair coins. What is the probability of obtaining at least 4 heads?
15) Compute $\log _{2}\left(\log _{3}\left(9^{8}\right)\right)$.
16) Find all real numbers k so that $2-\sqrt{3}$ is a root of

$$
p(x)=x^{2}-4 x+k
$$

17) Find the ordered pair (x, y) which lies on the line with equation $y=3 x+10$ and the line with equation $y=5 x-4$.
18) In a certain arcade a blue token is worth 5 yellow tokens; a yellow token is worth one-fourth of a green token; and a red token is worth one-half of a yellow token. If a blue token is worth 10 points, how much are 6 red tokens, 3 yellow tokens and 2 green tokens worth?
19) An amoeba propagates by simple division. Suppose each split takes 4 minutes to complete. When such an amoeba is placed in a glass container, the container is full of amoebas in one hour. How long would it take for the container to be filled if we start with 8 amoebas instead of only 1 ?
20) Assume a sequence is recursively defined as follows:
i) $a_{0}=5$
ii) $a_{\mathrm{n}}=a_{\mathrm{n}-1}+n$ for any $n \geq 1$.

Calculate a_{100}.
11) \qquad
12) \qquad
13) \qquad
14) \qquad
15) \qquad
16) \qquad
17) \qquad
18) \qquad
19) \qquad minutes
20) \qquad

