LUZERNE COUNTY MATHEMATICS CONTEST Luzerne County Council of Teachers of Mathematics Wilkes University - 2003 Senior Examination (Section I)

NAME:	Address:
SCHOOL: 0	City/ZIP:
,	Felephone:
Directions: For each problem, write your answer in the space Simplify all fractions and radicals. Your answer must be com	e provided. Do not use approximations. plete to receive credit for a problem.
1) What is the smallest positive integer divisible by both 4	2 and 80? 1)
2) What is one third of one quarter of one half of 192?	2)
3) Find the perimeter of the triangle formed by the coordinand the line $3x + 5y - 15 = 0$.	ate axes 3)
4) Find the equation of the circle with center (3, -7) that is tangent to the <i>y</i> -axis.	4)
5) If $\overline{AC} = \overline{FD} = 8$ and $\overline{BE} = 12$, find the area of the hexage A = 6 = 5 B = 5 = 6 C = 0	on below. 5)
6) What is the minimum value of the function $f(x) = 2x^2$ -	12 <i>x</i> + 16 ? 6)
7) Find all real numbers x that satisfy the following:	7)
$\left \frac{x-3}{x+4} \right < 2$	
8) Assume that you drop four marbles numbered 1, 4, 6, at bin. Assume you draw a pair of marbles If the sum win. If not, you put the marbles back into the bin and What is the probability you win in 2 or fewer selection	nd 11 into a 8) s 17, you re-draw. ns?
9) Find $\lim_{x \to 0^+} \frac{[x]}{x}$, where $[x]$ denotes the greatest integers or equal to <i>x</i> .	r less than 9)
10) Solve for $x: e^{\sqrt{x}} + \frac{14}{e^{\sqrt{x}}} = 9$	10) (OVER)

- 11) How many ways are there to place 10 indistinguishable balls into 3 different urns if each urn contains at least one ball?
- 12) $\frac{\sqrt{3}}{2} \sin x \frac{1}{2} \cos x =$ A) $\sin \left(x + \frac{7\pi}{6}\right)$ D) both A and C B) $\sin \left(x + \frac{11\pi}{6}\right)$ E) none of the above C) $\sin \left(x - \frac{5\pi}{6}\right)$
- 13) If $\tan \theta = \frac{7}{5}$ and $\pi < \theta < \frac{3\pi}{2}$, find $\sin \theta$.
- 14) A combination lock shows the numbers from 1 through 25. If an individual decides to try all possible three-number orderings, and can try 5 three-number orderings, per minute, what is the probability that the lock will be opened after 4 hours?
- 15) Given the following polar equation, convert it to a rectangular equation describing *y* in terms of *x*.

$$r = \frac{1}{1 + \sin \theta}$$

16) Express $\frac{(x+\frac{1}{y})^3(x-\frac{1}{y})^4}{(y-\frac{1}{x})^4(y+\frac{1}{x})^3}$ in the form $(\frac{x}{y})^n$, where *n* is a

positive integer.

- 17) Given $a_0 = 1$, and $a_n = \frac{2a_{n-1}}{3}$ for all $n \ge 1$. Find $a_0 + a_1 + \dots + a_5$.
- 18) Find all real solutions to the equation $x^{10} 6x^5 + 2 = 0$.
- 19) An architect designs a theater with 10 seats in the first row. Each subsequent row will have four more seats than the previous row. If the theater is to have a seating capacity of 960, how many rows must the architect use in his design?
- 20) A rectangular piece of cardboard is to be rolled into a right circular cylinder with open ends and having a volume of 400 cm³. The area of the cardboard is 600 cm². What are the length (*L*)

13)_____ 14)_____

11)_____

12)

15) <u>v =</u>

16)_____

17)

18) _____

19)	

 $20) \underline{L} = \underline{cm} \quad \underline{W} = \underline{cm}$

LUZERNE COUNTY MATHEMATICS CONTEST Luzerne County Council of Teachers of Mathematics Wilkes University - 2003 Senior Examination (Section II)

NAME:	Address:	
SCHOOL:	City/ZIP:	
	Telephone:	
Directions: For each problem, write your answer in the s Simplify all fractions and radicals. Your answer must be c	space provided. Do not use approximations. complete to receive credit for a problem.	
	1	. 3

1) Find the volume of a sphere with radius 3 in.		1)	<u>in</u> '
2) Find a function of the form $f(x) = A e^{Bx}$, if $f(0) = 6$ and $f(3) = 12$.		2)	
 One diagonal of a square has endpoints (-4, 3) and (5, -6). Find the endpoints of the other diagonal. 		3)	
4) Two supplementary angles are in a ratio of 5 to 7. Find the measure of each angle (in degrees).		4)	
5) Find the vertex and axis of symmetry of the parabola $x - 17 = 3y^2 + 12y$.		5) <u>vertex :</u> axis of symmetry :	
6) Which of the following statenI) Every square is a rhomII) Every trapezoid is a parIII) Every square is a rectant	nents are true? bus rallelogram ngle	6)	
A) I onlyB) II onlyC) III only	D) both II and IIIE) both I and III		
7) Express $.\overline{54}$ as a common frac	ction in lowest terms.	7)	
8) The relation $3x^2 - 18x + 4y^2$	-32y + 91 = 0 defines.	8)	
A) an ellipseB) a parabolaC) two distinct lines	D) a pointE) none of the above		
9) Evaluate $\lim_{x \to -2} \frac{x^2 + 6x + 8}{x^2 - 5x - 14}$		9)	
10) Find all real solutions of $\sqrt[3]{\sqrt{3}}$	$\sqrt{x-4} - 5 = \sqrt{8}$	10)	
		(0)	VER)

- 11) Evaluate $(\log_4 5)(\log_5 6)(\log_6 7) \cdots (\log_{255} 256)$.
- 12) Find all values of x that satisfy $|6 \frac{3}{x}| \le 2$?
- 13) Find real numbers A and B such that $\left(\frac{\sqrt{3}}{4} + \frac{1}{4}i\right)^6 = A + Bi.$
- 14) Solve for x: $\log_{10}(x-5) = \log_{10} x \log_{10} 5$.
- 15) Compute $\sin\left(\frac{5\pi}{12}\right)$.
- 16) Find the coefficient of $x^{46}y^2$ in the expansion of $(x^2 5y)^{25}$.
- 18) Find the polynomial with real coefficients of the smallest possible degree for which i and 5 + i are zeros and in which the coefficient of the highest power of x is 1.
- 19) Suppose two pumps are used to empty a large tank. It takes 14 hours to empty the tank using both pumps. It is known that one pump is 10% faster than the other. How much time (in hours) would be needed to empty the tank if only the faster pump was used?
- 20) A rectangle is inscribed in an equilateral triangle with a perimeter of 24 cm (see the figure below). Express the area, A, of the shaded region as a function of x.

11)	
12)	
13) <u>A=</u>	 <u>B=</u>
14) <u>x =</u>	
15)	
16)	
17)	
18)	
19)	 hours

20) A(x) =_____