LUZERNE COUNTY MATHEMATICS CONTEST
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 2003 Senior Examination
 (Section I)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) What is the smallest positive integer divisible by both 42 and 80 ?
2) What is one third of one quarter of one half of 192 ?
3) Find the perimeter of the triangle formed by the coordinate axes and the line $3 x+5 y-15=0$.
4) Find the equation of the circle with center $(3,-7)$ that is tangent to the y-axis.
5) If $\overline{A C}=\overline{F D}=8$ and $\overline{B E}=12$, find the area of the hexagon below.

6) What is the minimum value of the function $f(x)=2 x^{2}-12 x+16$?
7) Find all real numbers x that satisfy the following:

$$
\left|\frac{x-3}{x+4}\right|<2
$$

8) Assume that you drop four marbles numbered $1,4,6$, and 11 into a bin. Assume you draw a pair of marbles If the sum is 17 , you win. If not, you put the marbles back into the bin and re-draw. What is the probability you win in 2 or fewer selections?
9) Find $\lim _{x \rightarrow 0^{+}} \frac{[x]}{x}$, where $[x]$ denotes the greatest integer less than or equal to x.
10) Solve for x : $e^{\sqrt{x}}+\frac{14}{e^{\sqrt{x}}}=9$
11)
12) \qquad
13) \qquad
\qquad
\qquad
14)

\qquad
6)

$$
5+2 \cos +
$$

\qquad
11) How many ways are there to place 10 indistinguishable balls
into 3 different urns if each urn contains at least one ball?
12) $\frac{\sqrt{3}}{2} \sin x-\frac{1}{2} \cos x=$
12)
11) \qquad
A) $\sin \left(x+\frac{7 \pi}{6}\right)$
D) both A and C
B) $\sin \left(x+\frac{11 \pi}{6}\right)$
E) none of the above
C) $\sin \left(x-\frac{5 \pi}{6}\right)$
13) If $\tan \theta=\frac{7}{5}$ and $\pi<\theta<\frac{3 \pi}{2}$, find $\sin \theta$.
13) \qquad
14) A combination lock shows the numbers from 1 through 25 . If an individual decides to try all possible three-number orderings, and can try 5 three-number orderings, per minute, what is the probability that the lock will be opened after 4 hours?
15) Given the following polar equation, convert it to a
14) \qquad
15) $y=$
rectangular equation describing y in terms of x.

$$
r=\frac{1}{1+\sin \theta}
$$

16) Express $\frac{\left(x+\frac{1}{y}\right)^{3}\left(x-\frac{1}{y}\right)^{4}}{\left(y-\frac{1}{x}\right)^{4}\left(y+\frac{1}{x}\right)^{3}}$ in the form $\left(\frac{x}{y}\right)^{n}$, where n is a positive integer.
17) \qquad
18) Given $a_{0}=1$, and $a_{\mathrm{n}}=\frac{2 a_{\mathrm{n}-1}}{3}$ for all $n \geq 1$.
19) \qquad
Find $a_{0}+a_{1}+\ldots+a_{5}$.
20) Find all real solutions to the equation $x^{10}-6 x^{5}+2=0$.
21) \qquad
22) An architect designs a theater with 10 seats in the first row. Each subsequent row will have four more seats than the previous row. If the theater is to have a seating capacity of 960 , how many rows must the architect use in his design?
23) A rectangular piece of cardboard is to be rolled into a right \qquad
24) $L=$
cm
$W=$ cm
\qquad circular cylinder with open ends and having a volume of $400 \mathrm{~cm}^{3}$.
The area of the cardboard is $600 \mathrm{~cm}^{2}$. What are the length (L) and width (W) of the cardboard?

LUZERNE COUNTY MATHEMATICS CONTEST
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 2003 Senior Examination
 (Section II)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Find the volume of a sphere with radius 3 in.
2) Find a function of the form $f(x)=A e^{B x}$, if $f(0)=6$ and $f(3)=12$.
3) One diagonal of a square has endpoints $(-4,3)$ and $(5,-6)$.

Find the endpoints of the other diagonal.
4) Two supplementary angles are in a ratio of 5 to 7 . Find the measure of each angle (in degrees).
5) Find the vertex and axis of symmetry of the parabola $x-17=3 y^{2}+12 y$.
6) Which of the following statements are true?
I) Every square is a rhombus
II) Every trapezoid is a parallelogram
III) Every square is a rectangle
A) I only
D) both II and III
B) II only
E) both I and III
C) III only
7) Express.$\overline{54}$ as a common fraction in lowest terms.
8) The relation $3 x^{2}-18 x+4 y^{2}-32 y+91=0$ defines.
A) an ellipse
D) a point
B) a parabola
E) none of the above
C) two distinct lines
9) Evaluate $\lim _{x \rightarrow-2} \frac{x^{2}+6 x+8}{x^{2}-5 x-14}$
9) \qquad
10) Find all real solutions of $\sqrt[3]{\sqrt{x-4}-5}=\sqrt{8}$
10) \qquad
(OVER)
11) Evaluate $\left(\log _{4} 5\right)\left(\log _{5} 6\right)\left(\log _{6} 7\right) \cdots\left(\log _{255} 256\right)$.
12) Find all values of x that satisfy $\left|6-\frac{3}{x}\right| \leq 2$?
13) Find real numbers A and B such that

$$
\left(\frac{\sqrt{3}}{4}+\frac{1}{4} i\right)^{6}=A+B i .
$$

14) Solve for x : $\log _{10}(x-5)=\log _{10} x-\log _{10} 5$.
15) Compute $\sin \left(\frac{5 \pi}{12}\right)$.
16)
17) $x=$
18) Find the coefficient of $x^{46} y^{2}$ in the expansion of $\left(x^{2}-5 y\right)^{25}$.
19) \qquad
20) The exact value of
$\cos \frac{\pi}{100}+\cos \frac{2 \pi}{100}+\cos \frac{3 \pi}{100}+\ldots+\cos \frac{199 \pi}{100}$ is
A) 1
D) $\frac{\sqrt{2}}{2}$
B) -1
E) none of the above
C) 0
21) Find the polynomial with real coefficients of the smallest possible degree for which i and $5+i$ are zeros and in which the coefficient of the highest power of x is 1 .
22) Suppose two pumps are used to empty a large tank. It takes
23) \qquad 14 hours to empty the tank using both pumps. It is known that one pump is 10% faster than the other. How much time (in hours) would be needed to empty the tank if only the faster pump was used?
24) A rectangle is inscribed in an equilateral triangle with a perimeter of 24 cm (see the figure below). Express the area, A, of the shaded region as a function of x.

