LUZERNE COUNTY MATHEMATICS CONTEST
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 2005 Senior Examination
 (Section I)

NAME: \qquad
SCHOOL: \qquad

Address:

\qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) What is the diameter of a sphere whose surface area is 100π ?
2) Suppose the slope of the line segment connecting the points $(x+2,4)$ and $(3,7)$ is $\frac{9}{4}$. What is $x ?$
3) If $f(x)=\frac{5+x}{2}$, find $f^{-1}(3)$ where f^{-1} denotes the inverse function of f.
4) Evaluate $\sin (\pi x y)+x^{2}+y^{2}$ when $x=2$ and $y=7$.
5) Find the value of R if the area of the shaded region is $64 \pi \mathrm{~cm}^{2}$.

6) What is the perimeter of the triangle whose vertices are $(-3,-4)$, $(1,0)$, and $(2,1)$?
7) Find the period of $y=3 \sin (2 x-\pi)$.
8) A student taking an exam is required to answer 16 out of 20 questions. In how many ways can the 16 questions be selected if exactly 3 of the first 4 questions must be answered?
9) Find all solutions to the equation $\frac{1}{2} \sec x=\tan x$ for x in $[0,2 \pi]$.
10) How many distinct subsets of size 2 does the set $\{1,2,3,4,5\}$ possess?
(a) 5
(b) 10
(c) 20
(d) 120
11) $_x=$
12) \qquad
13) \qquad
14)
15) \qquad
\qquad
16) $R=$ cm.
17) \qquad
18)

\qquad
2) $x=$ \qquad
11) Find all real solutions of $e^{2 x}-7 e^{x}+10=0$.
11) $x=$
12)
12) Given $f(x)=6 x^{2}$ and $h \neq 0$, compute and simplify $\frac{f(x+h)-f(x)}{h}$.
(a) 0
(b) $12 x$
(c) $12 h+6 x$
(d) none of the above
13) Find a polynomial of degree 2 with integer coefficients, and leading coefficient 1 , whose distinct roots are $2 \pm 3 i$.
14) How many distinct solutions does the equation $2 \sin 3 \theta=1$ have
14)
13) \qquad on $[0, \pi]$?
(a) 1
(b) 2
(c) 3
(d) none of the above
15) If $f(x)=\frac{x^{2}-36}{x-6}$ and $x \neq 6$, how must f (6) be defined so f is continuous on $(-\infty, \infty)$?
16) Express the following as a polynomial in x : $\cos (2 \arccos x)$.
17) The set of all (x, y) for which $(x, y)=(-x, y)$ is represented by
15)
(a) the line $y=x$
(b) the line $y=-x$
(c) the x-axis
(d) the y-axis
18) Terry paints twice as fast as Sue and three times as fast as Ken.
18)
16)
17) If it takes them 90 minutes to paint a room with all three working together, how long would it take Ken if he works alone?
19) The equation(s) of the vertical asymptotes of the graph of
19) $f(x)=\frac{x}{x^{2}+5}$ is/are
(a) $x=0$
(b) $x= \pm 3$
(c) $y= \pm 3$
(d) the graph of f does not have any vertical asymptotes
20) If $f(x)=2 x-1$, find $f^{8}(2 x-1)$ where
20)
$f^{8}(x)=f(f(f(f(f(f(f(f(x))))))))$.

LUZERNE COUNTY MATHEMATICS CONTEST
 Luzerne County Council of Teachers of Mathematics
 Wilkes University - 2005 Senior Examination
 (Section II)

NAME: \qquad
SCHOOL: \qquad

Address: \qquad
City/ZIP: \qquad
Telephone: \qquad

Directions: For each problem, write your answer in the space provided. Do not use approximations.
Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Find the slope of the line perpendicular to the line $5 x-4 y=12$.
2)
3) \qquad
4) Assume we roll two four-sided dice. The faces are numbered $1,2,3$, and 4 , respectively. What is the probability of observing a sum of exactly five on the reckoned faces?
5) An equilateral triangle has a height of 25 inches. How long is one of its sides?
6) Solve the following linear system of equations for x and y.

$$
2 x-6 y=10
$$

$4 x+3 y=5$
5) Find $\frac{f(x+h)-f(x)}{h}$ where $f(x)=\frac{1}{x^{2}+1}$.
3) \qquad in.
4) $x=$ $y=$
5) \qquad
6) Find the inverse, $g(x)$, of the function $f(x)=\frac{4^{x}}{1+4^{x}}$.
6) $_g(x)=$
7) Find the smallest number that is a product of five distinct primes.
7) \qquad
8) Find all real solutions to the following equation: $\left|\frac{3}{7} x-\frac{1}{2}\right|=1$.
8) $x=$
9) Given the figure below, find $\angle B D C$ (in degrees).
9)

10) Find the one real solution of $x \ln x=3 e^{3}$.
10) \qquad
11) $\lim _{h \rightarrow 0} \frac{(3+h)^{3}-27}{h}=$
11)
(a) 0
(b) 1
(c) 9
(d) 27
(e) positive infinity
12) Assume $N=2^{7} \cdot 3^{4} \cdot 5^{2}$. How many divisors of N are multiples of 18 ?
13) The parallelogram below has an area of $3200 \mathrm{~cm}^{2}$. What is its perimeter?

14) Solve for $x: \log _{10}(x+2)-\log _{10}(2 x+3)=2$.
15) Which of the following graphs most closely resembles the graph
12) \qquad
13) \qquad
14)
15) \qquad of $f(x)=||x|-3|$?
a)
d)

b)

c)

16) $A=$ \qquad $B=$ \qquad
16) Find A, B, and C if $\frac{2 x^{2}-4 x-4}{x^{3}-2 x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-2}$ is an identity.
17) Find a function, $f(x)$, whose graph is a parabola that passes through the points $(1,3),(-1,-5)$ and $(2,10)$.
18) Find $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-5 x+6}$.
17) $f(x)=$
18)
19) \qquad
20)

3 distinct urns so that each urn contains at least one ball?

