LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2006 Senior Examination (Section I)

NAME:		Address:	
SCHOOL:		City/ZIP:	
	Tel	ephone:	
Dir Sin	ections: For each problem, write your answer in the space applify all fractions and radicals. Your answer must be comp	provided. Do not use approximations. plete to receive credit for a problem.	
1)	What is the length of the unique line segment connecting t $(0, 2)$ and $(4, 7)$?	he points 1)	
2)	How many distinct primes are in the prime factorization of	2 43? 2)	
3)	The slope of the line perpendicular to the line $x - 2y = 7$ is	3)	
	(a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) -2 (d) 2 (e) none of the above		
4)	Suppose $f(x) = 2x^2 + 3$. Evaluate $f(2x) - 2f(x)$.	4)	
5)	An isosceles right triangle has a hypotenuse of length 10. is the length of either of the triangles legs?	How long 5)	
6)	If $T = 2\pi \sqrt{\frac{m}{g}}$ for $m > 0$, $g > 0$, solve for g in terms of T	$f and m.$ 6)_ <i>g</i> =	
7)	If $f(x) = \frac{x-1}{x^2+4x-5}$, how must $f(1)$ be defined so f is c on $\{x \mid x \neq -5\}$	ontinuous 7)_ <u>f(1) =</u>	
8)	If $f(x) = \log\left(\frac{x+1}{x-1}\right)$, find all x such that $f(x) = f(2) + f(x)$	3). 8) <u>x =</u>	
9)	Find all real solutions x to $\sqrt{2x-3} - \sqrt{x+7} = 2$.	9) <u>x</u> =	
10)	Consider the graph of the function $f(x)$ below. This function	on 10)	

(a) is an even function (b) is an odd function (c) is not periodic (d) each of $\mathbf{a} - \mathbf{c}$ is true (e) none of $\mathbf{a} - \mathbf{c}$ are true

-2--3-

(OVER)

11) Find the axis of symmetry for the parabola $x = y^2 - 8y + 20$.	11)
12) Assume the population of fish in a given lake at time t months is given by the function $P(t) = \frac{50,000}{2+25e^{-\frac{t}{5}}}$, $t \ge 0$. What is the upper limit of the fish population?	12)
13) How many gallons of a 10% brine solution and a 40% brine solution must be mixed to obtain 20 gallons of a 25% brine solution?	13)
14) Find the sum of the integers from 101 to 200 inclusive.	14)
15) The graph of the function $f(x) = mx + b$ is a line. What is the <i>y</i> -intercept of the graph of $(f \circ f \circ f)(x)$?	15)
16) Find a polynomial of degree 3 with integer coefficients and leading coefficient 3 whose distinct roots are 1, 2 <i>i</i> , and -2 <i>i</i> respectively.	16)
17) How many solutions does the equation $3\sin\left(\frac{1}{x}\right) = -2$ possess on the interval $(0, \pi)$?	17)
(a) 0 (b) 1 (c) 4 (d) 8 (e) none of the above	
18) A circle has its center on the graph of $y = 2x + 4$ and is tangent to the graph of $y = x + 1$ at the point (6, 7). Find the center of the circle.	18)
19) Find all real numbers x such that $\left(\frac{2}{\sqrt{\pi}}\right)^x = \operatorname{Arcsin}\left(\frac{\sqrt{2}}{2}\right)$.	19)_ <i>x</i> =

20)	Assume $N = 2^5 \cdot 7^{11} \cdot 11^7$.	How many divisors of N are)
	multiples of 22?		

20)_____

LUZERNE COUNTY MATHEMATICS CONTEST

Luzerne County Council of Teachers of Mathematics Wilkes University - 2006 Senior Examination (Section II)

NAME:	Address:	
SCHOOL:	City/ZIP:	
	Telephone:	

Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.

1) Express $\log_5\left(\frac{1}{25}\right)$ as a rational number.	1)
2) Assume the slope of the line segment containing the points (x+1, 4) and (2, x+5) is 2. What is x ?	2) <u>x</u> =
3) Find the smallest prime number greater than or equal to 80.	3)
4) Charles owns 10 different suits. He is going on a business trip. and needs to pack 5 suits. How many different ways can he select the suits?	4)
5) Find all real solutions to $x^4 - 4x^2 + 4 = 0$.	5) <u>x</u> =
6) Express $\sec\left(-\frac{\pi}{3}\right)$ as a rational number.	6)
7) Find the range of the function $f(x) = -2x^2 + 5x + 8$.	7)
8) Which of the following is the negation of the statement?	8)
Nancy always wears a red sweater on Friday.	
 (a) Nancy never wears a red sweater on Friday. (b) There exists a Friday on which Nancy does not wear a red sweat (c) Nancy always wears a red sweater on days other than Friday. (d) None of the above. 	ter.
9) If $\log(a) = K$ and $\log(b) = L$, express $\log((a^2b^5)^3)$ as a sum 9) of two terms involving K and L.	
10) Find $\frac{f(x+h) - f(x)}{h}$ where $f(x) = x^3$.	10)

(OVER)

11) Find all values of x that satisfy the following nonlinear 11) <u>x</u> = system of equations. x + y = -3 $x^2 + y^2 = 17$ **12)** The equation $x^2 - 6x + 2y^2 - 16y + 42 = 0$ describes a(n) 12) (b) parabola (c) hyperbola (a) circle (d) line (e) none of the above 13) If $\sin y = x$ and $-\frac{\pi}{2} < y < \frac{\pi}{2}$, compute sec y. 13) 14) If a and b are non-zero rational numbers and $\frac{a^2}{b^2} < 3$, then 14)_____ (a) $\frac{(a+3b)^2}{(a+b)^2} < 3$ (b) $\frac{(a+3b)^2}{(a+b)^2} > 3$ (c) $\frac{(a+3b)^2}{(a+b)^2} = 3$ (d) $\frac{(a+3b)^2}{(a+b)^2} \ge 3$ (e) none of **a** - **d** are true for rational numbers a and b 15) **15)** Assume a deck of twelve cards contains 3 identical two's, 3 identical three's, 3 identical four's, and 3 identical five's. How many 4 card hands are possible? 16) How many real solutions does the equation $x^3 - 5x^2 + 8x - 4 = 0$ 16) possess? 17) Consider a triangle *ABC* where $|\overline{AB}| = 10$, $|\overline{BC}| = 16$, 17)_____ and $\angle ABC = \frac{2\pi}{3}$ radians. Find $|\overline{AC}|$. 18) The shortest side of a right triangle has length 3. Find the shortest 18) side of a similar right triangle whose area is twice that of the original triangle. **19)** Find the solution set to the inequality $|\sin x| < \frac{1}{2}$ on $[0, 2\pi]$. 19) 20) What is the probability of rolling two fair six-sided dice and 20)_____ obtaining a sum that is divisible by 5?