LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2008 Senior Examination
(Section I)

NAME:	Address:	
SCHOOL:	City/ZIP:	
	Telephone:	
Directions: For each problem, write your answer in the space provided. Do not use approximations. Simplify all fractions and radicals. Your answer must be complete to receive credit for a problem.		
1) What is the area of a square with a diagonal of length 2	units? 1)	
2) Assume a container holds 6 identical red jelly beans and blue jelly beans. If we reach into the container and rand select 3 jelly beans, what is the probability all three are	domly	
3) Completely factor $2x^3 + 4x^2 + 3x + 6$.	3)	
4) Find all real numbers x that satisfy the inequality $ x-2 $	> 2 - x. 4)	
5) The maximum value of $\frac{2}{x^2 - 4x + 7}$ is (a) 2 (b) $\frac{2}{3}$ (c) $\frac{3}{2}$	5)(d) 1	
6) A square and a circle have equal perimeters. What is the area of the circle to the area of the square?	e ratio of the 6)	
7) Find a polynomial $f(x)$ with real coefficients such that degree 2, has roots $(2+i)$ and $(2-i)$, and has leading	•	
8) If $4x^2 - 6x + m = (x-3)(ax+b)$ where a, b, and m a numbers, what is the value of m?	are real 8) <u>m=</u>	
9) Compute $\lim_{x \to 4} \frac{x^3 - 64}{2x - 8}$.	9)	
10) Express $\frac{5}{\sqrt[3]{4}}$ in the form $\frac{a}{b}\sqrt[3]{2}$ where $\frac{a}{b}$ is a fraction lowest terms.	on in 10)	

(OVER)

- 11) If x < 2, then $\sqrt{(x-2)^2} + |3-x|$ is + |3-x| is **(c)** 2x-5 **(d)** 5-2x
- **(b)** 1

- **12)** Suppose $a_1 = 3$ and $a_n = 3a_{n-1} + 2$, Find $a_7 a_5$.

11)_____

13) Find the exact value of $\sin\left(\frac{\pi}{8}\right)$.

13)_____

14) Solve $\frac{B^2}{A A} + Ax^2 = -Bx$ for x in terms of A and B.

14)_____

15) Determine all real solutions of $\frac{\ln(2x+3)}{\ln(x+1)} = 2$.

- 15)_____
- **16)** If a and b are positive integers and 143a + 500b = 2001, then what is the value of a + b?
- 16)_____

17) The number of digits in the number $N = 5^8 - 2^{12}$ is

17)_____

- (a) 5

- **(b)** 6 **(c)** 7 **(d)** 8 **(e)** 9

- 18)_____
- **18)** Express $\frac{1}{5+7i}$ in the form a+bi where a and b are rational numbers.
- **19**) Find all real solutions to the inequality $\left| \frac{2}{9-x^2} \right| \le \frac{1}{4}$. 19)_____
- **20)** If $f(x) = \ln\left(\frac{1+x}{1-x}\right)$ for -1 < x < 1, then $f\left(\frac{3x+x^3}{1+3x^2}\right) =$
- 20)____

- **(a)** -f(x) **(b)** 2f(x) **(c)** 3f(x)
- **(d)** $[f(x)]^2$ **(e)** $[f(x)]^3 f(x)$

LUZERNE COUNTY MATHEMATICS CONTEST
Luzerne County Council of Teachers of Mathematics
Wilkes University - 2008 Senior Examination
(Section II)

NAME:	Address: _			
SCHOOL: _	City/ZIP:			
	Telephone:	Telephone:		
	For each problem, write your answer in the space provided. fractions and radicals. Your answer must be complete to receive			
1) What is	the volume of a sphere whose diameter is 6 units?	1)		
2) What is	the largest prime smaller than 50?	2)		
3) Find the	e equation of the line between $P = (1, 3)$ and $Q = (2, -7)$.	3)		
4) Compute	te $\lim_{x \to 2} \frac{x^2 - 6x + 8}{2x - 4}$.	4)		
5) If $1 - \frac{4}{x}$	$\frac{4}{x} + \frac{4}{x^2} = 0$, then compute $\frac{5}{x}$.	$\frac{5}{x} =$		
6) Express	$\frac{\log_4 8}{\log_{\sqrt{5}} 25}$ as a fraction in lowest terms.	6)		
	and c are positive integers less than 10, then $b)(10a+c) = 100a(a+1) + bc$ if	7)		
• •	b + c = 10 (b) $b = c$ (c) $a + b = 10= b (e) a + b + c = 10$			
$a \otimes b$	and b be positive real numbers. Consider the binary operation $= \frac{ab}{a+b}$ on the set of positive real numbers. Express $4 \otimes 4$ ional number.	8)		
9) How ma in the st	any distinct strings can be formed by permuting the letters tring A L A B A S T E R ?	9)		
	the sum of the distinct roots/zeros of the equation $ x - 6 = 0 \text{ where } x \text{ denotes the absolute value of } x?$	10)(OVER)		

- 11) If the point (x, -4) lies on the straight line joining the points (-4, 0) and (0,8) in the xy-plane, what is the value of x?
- 11)____

- **12**) If $a = \log_8(225)$ and $b = \log_2(15)$, then
 - (a) $a = \frac{b}{2}$ (b) $a = \frac{2b}{3}$ (c) a = b
 - **(d)** a = 2b **(e)** $a = \frac{3b}{2}$
- 13) If four times the reciprocal of the circumference of a circle equals the diameter of the circle, what is the circle's area?
- 13)

14)

- **14)** If the factorization of $x^2 + 5x + m$ is $(x+n)^2$, then $\frac{m}{n}$ is
 - (a) $-\frac{5}{2}$ (b) $\frac{2}{5}$ (c) $-\frac{2}{5}$ (d) $\frac{5}{2}$

- **15)** Express $\lim_{h \to 0} \frac{\sin(x+h) \sin(x)}{h}$ as a function of x only.
- 15)

16)____

- **16)** Solve the following system of equations for x and y:
 - $\begin{cases} 2x y = 5 \\ \frac{2y}{x} \frac{x}{y} = 1 \end{cases}$
- 17) If |x+3+4i| = 2, then the maximum value of |x| is (a) 3 (b) 5 (c) 7 (d) 9
- 17)_____
- **18)** A right circular cylinder has volume 54π in³. If the radius of the cylinder is increased by 2 inches but the height remains unchanged, its volume would be 150π in³. What is the height of the cylinder?
- 18)_____
- **19)** If $abc \neq 0$ and a+b+c=0, then express $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}$ as an integer.
- 19)_____
- **20)** Assume the diagonal of a cube has length a. Express the surface area of the cube as a function of a.
- 20)_____